Linux - 进程信号

1、信号入门

1.1、生活角度的信号

  • 你在网上买了很多件商品,再等待不同商品快递的到来。但即便快递没有到来,你也知道快递来临时, 你该怎么处理快递。也就是你能“识别快递”;
  • 当快递员到了你楼下,你也收到快递到来的通知,但是你正在打游戏,需5min之后才能去取快递。那么在在这5min之内,你并没有下去去取快递,但是你是知道有快递到来了。也就是取快递的行为并不是一定要立即执行,可以理解成“在合适的时候去取”;
  • 在收到通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间,你并没有拿到快递,但是你知道有一个快递已经来了。本质上是你“记住了有一个快递要去取”;
  • 当你时间合适,顺利拿到快递之后,就要开始处理快递了。而处理快递一般方式有三种:1. 执行默认动作;2. 执行自定义动作;3. 忽略快递;
  • 快递到来的整个过程,对你来讲是异步的,你不能准确断定快递员什么时候给你打电话;

1.2、技术应用角度的信号

1. 用户输入命令,在Shell下启动一个前台进程:

  • 用户按下Ctrl-C ,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程;
  • 前台进程因为收到信号,进而引起进程退出;
[root@localhost code_test]$ cat sig.c 
#include <stdio.h>
int main()
{
     while(1)
     {
         printf("I am a process, I am waiting signal!\n");
         sleep(1);
     }
}

[root@localhost code_test]$ ./sig 
I am a process, I am waiting signal!
I am a process, I am waiting signal!
I am a process, I am waiting signal!
^C
[whb@localhost code_test]$ 
  • 请将生活例子和 Ctrl-C 信号处理过程相结合,解释一下信号处理过程
  • 进程就是你,操作系统就是快递员,信号就是快递

1.3、注意

  1. Ctrl-C 产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程结束就可以接受新的命令,启动新的进程
  2. Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像 Ctrl-C 这种控制键产生 的信号;
  3. 前台进程在运行过程中用户随时可能按下 Ctrl-C 而产生一个信号,也就是说该进程的用户空间代码执行 到任何地方都有可能收到 SIGINT 信号而终止,所以信号相对于进程的控制流程来说是异步 (Asynchronous)的;

1.4、信号概念

  • 信号是进程之间事件异步通知的一种方式,属于软中断;

1.5、用kill -l命令可以察看系统定义的信号列表

  • 每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定义 #define SIGINT 2;
  • 编号34以上的是普通信号,编号34以下的是实时信号,本章只讨论编号34以上的信号,不讨论实时信号。这些信号各自在什么条件下 产生,默认的处理动作是什么,在signal(7)中都有详细说明: man 7 signal

1.6、 信号处理常见方式概览

(sigaction函数稍后详细介绍),可选的处理动作有以下三种:

  1. 忽略此信号;
  2. 执行该信号的默认处理动作;
  3. 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉 (Catch)一个信号;

2、产生信号

2.1、通过终端按键产生信号

SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump,现在我们来验证一 下;

Core Dump

首先解释什么是Core Dump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部 保存到磁 盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误, 事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的, 因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许 产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K: $ ulimit -c 1024;

2.2、调用系统函数向进程发信号

首先在后台执行死循环程序,然后用kill命令给它发SIGSEGV信号;

  •  29812是test进程的id。之所以要再次回车才显示 Segmentation fault ,是因为在29812进程终止掉之前 已经回到了Shell提示符等待用户输入下一条命令,Shell不希望Segmentation fault信息和用户的输入交错在一起,所以等用户输入命令之后才显示;
  • 指定发送某种信号的kill命令可以有多种写法,上面的命令还可以写成 kill -SIGSEGV 29812 或 kill -11 29812 , 11是信号SIGSEGV的编号。以往遇到的段错误都是由非法内存访问产生的,而这个程序本身没错, 给它发SIGSEGV也能产生段错误;

kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。raise函数可以给当前进程发送指定 的信号(自己给自己发信号);

#include <signal.h>
int kill(pid_t pid, int signo);
int raise(int signo);
这两个函数都是成功返回0,错误返回-1。

abort函数使当前进程接收到信号而异常终止;

#include <stdlib.h>
void abort(void);
就像exit函数一样,abort函数总是会成功的,所以没有返回值;

2.3、由软件条件产生信号

SIGPIPE是一种由软件条件产生的信号,在“管道”中已经介绍过了。本节主要介绍alarm函数和SIGALRM信号;

#include <unistd.h>
unsigned int alarm(unsigned int seconds);
调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号, 
该信号的默认处理动作是终止当前进程;

这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数。打个比方,某人要小睡一觉,设定闹钟为30分钟之后 响,20分钟后被人吵醒了,还想多睡一会儿,于是重新设定闹钟为15分钟之后响,“以前设定的闹钟时间还余下的时间”就 是10分钟。如果seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数;

这个程序的作用是1秒钟之内不停地数数,1秒钟到了就被SIGALRM信号终止;

2.4、 硬件异常产生信号

硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除 以0的指令,CPU的运算单元会产生异常,内核将这个异常解释 为SIGFPE信号发送给进程。再比如当前进程访问了非 法内存地址,,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程;

3、信号捕捉初识

#include <stdio.h>
#include <signal.h>
void handler(int sig)
{
     printf("catch a sig : %d\n", sig);
}

int main()
{
     signal(2, handler); //前文提到过,信号是可以被自定义捕捉的,siganl函数就是来进行
信号捕捉的;
     while(1);
     return 0;
}

[ketil@localhost code_test]$ ./sig 
^Ccatch a sig : 2
^Ccatch a sig : 2
^Ccatch a sig : 2
^Ccatch a sig : 2
^\Quit (core dumped)
[ketil@localhost code_test]$ 

4、模拟一下野指针异常

//默认行为
[ketil@localhost code_test]$ cat sig.c 
#include <stdio.h>
#include <signal.h>
void handler(int sig)
{
     printf("catch a sig : %d\n", sig);
}

int main()
{
   //signal(SIGSEGV, handler);
     sleep(1);
     int *p = NULL;
     *p = 100;
     while(1);
     return 0;
}

[ketil@localhost code_test]$ ./sig 
Segmentation fault (core dumped)
[ketil@localhost code_test]$ 

//捕捉行为
[ketil@localhost code_test]$ cat sig.c 
#include <stdio.h>
#include <signal.h>
void handler(int sig)
{
     printf("catch a sig : %d\n", sig);
}

int main()
{
     signal(SIGSEGV, handler);
     sleep(1);
     int *p = NULL;
     *p = 100;
     while(1);
     return 0;
}

[ketil@localhost code_test]$ ./sig 
[ketil@localhost code_test]$ ./sig 
catch a sig : 11
catch a sig : 11
catch a sig : 11

由此可以确认,我们在C/C++当中除零,内存越界等异常,在系统层面上,是被当成信号处理的;

5、总结

  • 上面所说的所有信号产生,最终都要由OS来进行执行,为什么?OS是进程的管理者;
  • 信号的处理是否是立即处理的?在合适的时候;
  • 信号如果不是被立即处理,那么信号是否需要暂时被进程记录下来?记录在哪里最合适呢;
  • 一个进程在没有收到信号的时候,能否能知道,自己应该对合法信号作何处理呢?
  • 如何理解OS向进程发送信号?能否描述一下完整的发送处理过程?

6、阻塞信号

6.1、信号其他相关常见概念

  • 实际执行信号的处理动作称为信号递达(Delivery);
  • 信号从产生到递达之间的状态,称为信号未决(Pending);
  • 进程可以选择阻塞 (Block )某个信号;
  • 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作;
  • 注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作;

6.2、在内核中的表示

信号在内核中的表示示意图:

  •  每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作;
  • SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞了;
  • SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。 如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次 或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。本章不讨论实时信号;

6.3、sigset_t

从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。 因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号 的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有 效”和“无效”的含义是该信号是否处于未决状态。阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略;

6.4、信号集操作函数

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的;

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);
  • 函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含任何有效信号;
  • 函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位,表示 该信号集的有效信号包括系统支持的所有信号;
  • 注意,在使用sigset_ t类型的变量之前,一定要调用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号;

这四个函数都是成功返回0,出错返回-1。sigismember是一个布尔函数,用于判断一个信号集的有效信号中是否包含 某种 信号,若包含则返回1,不包含则返回0,出错返回-1;

6.5、sigprocmask

调用函数sigprocmask可以读取或更改进程的信号屏蔽字(阻塞信号集);

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset); 
返回值:若成功则为0,若出错则为-1;

如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后 根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值;

SIG_BLOCKset 包含了我们希望添加到当前信号屏蔽字的信号,相当于 mask = mask | set
SIG_UNBLOCKset 包含了我们希望从当前信号屏蔽字中解除阻塞的信号,相当于 mask = mask & ~set
SIG_SETMASK设置当前信号屏蔽字为 set 所指向的值,相当于mask = set

如果调用 sigprocmask 解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达;

6.6、sigpending

#include <signal.h>
sigpending
读取当前进程的未决信号集,通过set参数传出。调用成功则返回0,出错则返回-1。 下面用刚学的几个函数做个实验。
程序如下: 

7、捕捉信号

 7.1、内核如何实现信号的捕捉

如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行 main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号 SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行 sighandler 函数,sighandler 和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是两个独立的控制流程。 sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复 main函数的上下文继续执行了;

7.2、sigaction

#include <signal.h>
int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);
  • sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回- 1。signo 是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体;
  • 将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用;

当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用 sa_mask 字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数,本章不详细解释这两个字段,有兴趣可以在了解一下;

8、可重入函数

  •  main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的 时候,因 为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函 数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从 sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步 之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了;
  • 像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称 为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之, 如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。想一下,为什么两个不同的 控制流程调用同一个函数,访问它的同一个局部变量或参数就不会造成错乱?

如果一个函数符合以下条件之一则是不可重入的:

  • 调用了malloc或free,因为malloc也是用全局链表来管理堆的;
  • 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构;

9、volatile

  • 该关键字在C当中我们已经有所涉猎,今天我们站在信号的角度重新理解一下;
[ketil@localhost code_test]$ cat sig.c 
#include <stdio.h>
#include <signal.h>
int flag = 0;
void handler(int sig)
{
     printf("change flag 0 to 1\n");
     flag = 1;
}

int main()
{
     signal(2, handler);
     while(!flag);

     printf("process quit normal\n");
     return 0;
}

[ketil@localhost code_test]$ cat Makefile 
sig:sig.c
     gcc -o sig sig.c #-O2
.PHONY:clean
clean:
     rm -f sig

[ketil@localhost code_test]$ ./sig 
^Cchage flag 0 to 1
process quit normal

标准情况下,键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 , while 条件不满足,退出循环,进程退出;

[ketil@localhost code_test]$ cat sig.c 
#include <stdio.h>
#include <signal.h>
int flag = 0;
void handler(int sig)
{
     printf("chage flag 0 to 1\n");
     flag = 1;
}
int main()
{
     signal(2, handler);
     while(!flag);

     printf("process quit normal\n");
     return 0;
}

[ketil@localhost code_test]$ cat Makefile 
sig:sig.c
     gcc -o sig sig.c -O2
.PHONY:clean
clean:
     rm -f sig

[ketil@localhost code_test]$ ./sig 
^Cchage flag 0 to 1
^Cchage flag 0 to 1
^Cchage flag 0 to 1

        优化情况下,键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 ,但是 while 条件依旧满足,进程继续运行!但是很明显flag肯定已经被修改了,但是为何循环依旧执行?很明显, while 循环检查的flag, 并不是内存中最新的flag,这就存在了数据二异性的问题。 while 检测的flag其实已经因为优化,被放在了 CPU 寄存器当中。如何解决呢?很明显需要 volatile;

[ketil@localhost code_test]$ cat sig.c 
#include <stdio.h>
#include <signal.h>
volatile int flag = 0;
void handler(int sig)
{
     printf("chage flag 0 to 1\n");
     flag = 1;
}
int main()
{
     signal(2, handler);
     while(!flag);

     printf("process quit normal\n");
     return 0;
}

[ketil@localhost code_test]$ cat Makefile 
sig:sig.c
     gcc -o sig sig.c -O2
.PHONY:clean
clean:
     rm -f sig
 
[ketil@localhost code_test]$ ./sig 
^Cchage flag 0 to 1
process quit normal
  • volatile 作用:保持内存的可见性,告知编译器,被该关键字修饰的变量,不允许被优化,对该变量的任何操作,都必须在真实的内存中进行操作;

10、SIGCHLD信号

        进程一章讲过用wait和waitpid函数清理僵尸进程,父进程可以阻塞等待子进程结束,也可以非阻 塞地查询是否有子进程结束等待清理(也就是轮询的方式)。采用第一种方式,父进程阻塞了就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一 下,程序实现复杂;

        其实,子进程在终止时会给父进程发SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可;

        请编写一个程序完成以下功能:父进程fork出子进程,子进程调用exit(2)终止,父进程自定义SIGCHLD信号的处理函数, 在其中调用wait获得子进程的退出状态并打印;

        事实上,由于UNIX 的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不 会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略通常是有区别的,但这是一个特例。此方法对于Linux可用,但不保证在其它UNIX系统上都可用。请编写程序验证这样做不会产生僵尸进程;

测试代码:

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
void handler(int sig)
{
     pid_t id;
     while( (id = waitpid(-1, NULL, WNOHANG)) > 0)
     {
         printf("wait child success: %d\n", id);
     }
     printf("child is quit! %d\n", getpid());
}
int main()
{
     signal(SIGCHLD, handler);
     pid_t cid;
     if((cid = fork()) == 0)
     {//child
         printf("child : %d\n", getpid());
         sleep(3);
         exit(1);
     }

     while(1)
     {
         printf("father proc is doing some thing!\n");
         sleep(1);
     }
     return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/451321.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【死磕Elasticsearch】从实战中来,到实战中去

文章目录 写在前面&#xff1a;1、索引阻塞的种类2、什么时候使用阻塞&#xff1f;场景1&#xff1a;进行系统维护场景。场景2&#xff1a;保护数据不被随意更改场景。场景3&#xff1a;优化资源使用的场景。场景4&#xff1a;遵守安全规则场景。 3、添加索引阻塞API4、解除设置…

C++感受2-逐字逐句,深入理解C++最小例程

以 “Hello World” 例程为载体、线索&#xff0c;在完成 “间接名字空间限定” 写法转换到“直接名字空间限定”的过程&#xff0c;同时掌握函数、主函数、函数调用、级联操作、声明、类型、int、字符串类型、头文件包含、行为数据、流输出操作符、标准输出流对象、标准库名字…

1~5节. 编程训练习题课

疯狂练一练 每一题都有非常详细的注释, 如果大家有其他更简单的思路, 可以在评论区交流, 或者私信一起讨论. 1、定义一个方法&#xff0c;该方法能够找出两个小数中的较小值并返回。 package com.itheima.lxh_exercise;public class Exercise {public static void main(Stri…

2024年,真的别裸辞....

作为IT行业的大热岗位——软件测试&#xff0c;只要你付出了&#xff0c;就会有回报。说它作为IT热门岗位之一是完全不虚的。可能很多人回说软件测试是吃青春饭的&#xff0c;但放眼望去&#xff0c;哪个工作不是这样的呢&#xff1f;会有哪家公司愿意养一些闲人呢&#xff1f;…

理论学习:Softmax层和全连接层 全连接层之前的数据

Softmax层和全连接层 Softmax层和全连接层在深度学习模型中通常是紧密相关的&#xff0c;经常一起使用。 全连接层&#xff08;也称为线性层或密集连接层&#xff09;是深度学习模型中常见的层之一&#xff0c;它将输入张量与权重矩阵相乘&#xff0c;并添加偏置项&#xff0c;…

PaddleOCR表格识别运行实例

目录 PaddleOCR 开源项目地址 一、数据集 1. 训练数据下载 2.数据集介绍 &#xff08;1&#xff09;PubTabNet数据集 &#xff08;2&#xff09; 好未来表格识别竞赛数据集 &#xff08;3&#xff09;WTW中文场景表格数据集 二、训练步骤 1.数据放置 2.环境配置 &…

k8s-生产级的k8s高可用(2) 25

部署containerd k8s2、k8s3、k8s4在配置前需要重置节点&#xff08;reset&#xff09;在上一章已完成 禁用所有节点docker和cri-docker服务 所有节点清除iptables规则 重置后全部节点重启 由于之前部署过docker&#xff0c;因此containerd默认已安装 修改配置 启动containe…

OpenCV学习笔记(一)——Anaconda下载和OpenCV的下载

OpenCV是图象识别中有巨大的应用场景&#xff0c;本篇文章以Python为基础。当初学OpenCV的时候&#xff0c;推使用在Anaconda编写代码&#xff0c;原因比较方便&#xff0c;下面我们对于Anaconda的下载过程进行演示。 Anaconda的下载 首先打开官网www.anaconda.com/download找…

Midjourney绘图欣赏系列(十)

Midjourney介绍 Midjourney 是生成式人工智能的一个很好的例子&#xff0c;它根据文本提示创建图像。它与 Dall-E 和 Stable Diffusion 一起成为最流行的 AI 艺术创作工具之一。与竞争对手不同&#xff0c;Midjourney 是自筹资金且闭源的&#xff0c;因此确切了解其幕后内容尚不…

力扣701. 二叉搜索树中的插入操作

思路&#xff1a;往二叉搜索树中插入一个值&#xff0c;树的结构有多种符合的情况&#xff0c;那我们可以选一种最容易的插入方式&#xff0c;反正只需要插入一个值而已&#xff0c;我们不难发现&#xff0c;不管插入什么值&#xff0c;都可以安排插入到叶子节点上。 再利用二叉…

uview upicker时间选择器(附Demo)

目录 前言正文 前言 uniapp时间选择器&#xff0c;是upicker&#xff0c;与微信小程序还是有些区别 补充官网的基本知识&#xff1a;uview官网 官网的展示例子如下&#xff1a;&#xff08;但是没Demo&#xff09; 正文 通过上面的展示图&#xff0c;复刻一个类似Demo图&am…

小兔鲜鲜项目(前端vue3)

成果图 大家喜欢给一个赞被&#xff0c; 项目地址&#xff1a;gitee 注意&#xff1a;项目克隆下去之后先运行 npm i之后安装项目插件包之后在npm run dev 运行就可以了

【Mysql】事务与索引

目录 MySQL事务 事务的特性 并发事务的问题&#xff1f; 事务隔离级别&#xff1f; MySQL索引 数据结构 索引类型 聚簇索引与非聚簇索引 聚集索引的优点 聚集索引的缺点 非聚集索引的优点 非聚集索引的缺点 非聚集索引一定回表查询吗(覆盖索引)? 覆盖索引 联合索…

识别恶意IP地址的有效方法

在互联网的环境中&#xff0c;恶意IP地址可能会对网络安全造成严重威胁&#xff0c;例如发起网络攻击、传播恶意软件等。因此&#xff0c;识别恶意IP地址是保护网络安全的重要一环。IP数据云将探讨一些有效的方法来识别恶意IP地址。 IP地址查询&#xff1a;https://www.ipdata…

springboot265基于Spring Boot的库存管理系统

基于Spring Boot库存管理系统 Inventory Meanagement System based on Spring Boot 摘 要 当下&#xff0c;如果还依然使用纸质文档来记录并且管理相关信息&#xff0c;可能会出现很多问题&#xff0c;比如原始文件的丢失&#xff0c;因为采用纸质文档&#xff0c;很容易受潮…

Redis底层核心对象RedisObject源码分析

文章目录 1. redis底层数据结构2. 插入KV底层源码流程分析 1. redis底层数据结构 redis 6数据结构和底层数据结构的关系 String类型本质是SDS动态字符串&#xff0c;即redis层面的数据结构底层会有对应的数据结构实现&#xff0c;上面是redis 6之前的实现 redis 7数据结构和底…

Terrace联合创始人兼CEO Jesse Beller确认出席Hack.Summit() 2024区块链开发者大会

在科技创新的浪潮中&#xff0c;区块链技术以其独特的去中心化、透明性和安全性&#xff0c;正逐渐成为引领未来发展的重要力量。在这样的背景下&#xff0c;备受瞩目的Hack.Summit() 2024区块链开发者大会即将于4月9日至10日在香港数码港盛大举行。本次大会的亮点之一&#xf…

程序员春招攻略:金三银四的求职智慧与机遇

文章目录 程序员的金三银四求职宝典方向一&#xff1a;面试技巧分享自我介绍的艺术技术问题的回答策略团队协作经验的有效展示压力面试的应对结束语的巧妙运用 方向二&#xff1a;面试题解析数据结构与算法题系统设计题编程题 方向三&#xff1a;公司文化解读腾讯&#xff08;T…

软件设计不是CRUD(14):低耦合模块设计理论——行为抽象与设计模式(上)

是不是看到“设计模式”四个字,各位读者就觉得后续内容要开始讲一些假大空的内容了?各位读者是不是有这样的感受,就是单纯讲设计模式的内容,网络上能找到很多资料,但是看过这些资料后读者很难将设计模式运用到实际的工作中。甚至出现了一种声音:设计模式是没有用的,应用…

机试:最大子序列的和

问题描述: 算法思想: 若第(i-1)个序列的小于0,则第i个序列的最大值为nums[i]; 若第(i-1)个序列的小于0,则第i个序列的最大值为max(i-1) nums[i]; 如果max(i-1)>0,max(i)max(i-1)Nums(i) 如果max(i-1)<0,max(i)Nums(i)代码示例: #include <bits/stdc.h> //该算法…