1、信号入门
1.1、生活角度的信号
- 你在网上买了很多件商品,再等待不同商品快递的到来。但即便快递没有到来,你也知道快递来临时, 你该怎么处理快递。也就是你能“识别快递”;
- 当快递员到了你楼下,你也收到快递到来的通知,但是你正在打游戏,需5min之后才能去取快递。那么在在这5min之内,你并没有下去去取快递,但是你是知道有快递到来了。也就是取快递的行为并不是一定要立即执行,可以理解成“在合适的时候去取”;
- 在收到通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间,你并没有拿到快递,但是你知道有一个快递已经来了。本质上是你“记住了有一个快递要去取”;
- 当你时间合适,顺利拿到快递之后,就要开始处理快递了。而处理快递一般方式有三种:1. 执行默认动作;2. 执行自定义动作;3. 忽略快递;
- 快递到来的整个过程,对你来讲是异步的,你不能准确断定快递员什么时候给你打电话;
1.2、技术应用角度的信号
1. 用户输入命令,在Shell下启动一个前台进程:
- 用户按下Ctrl-C ,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程;
- 前台进程因为收到信号,进而引起进程退出;
[root@localhost code_test]$ cat sig.c
#include <stdio.h>
int main()
{
while(1)
{
printf("I am a process, I am waiting signal!\n");
sleep(1);
}
}
[root@localhost code_test]$ ./sig
I am a process, I am waiting signal!
I am a process, I am waiting signal!
I am a process, I am waiting signal!
^C
[whb@localhost code_test]$
- 请将生活例子和 Ctrl-C 信号处理过程相结合,解释一下信号处理过程
- 进程就是你,操作系统就是快递员,信号就是快递
1.3、注意
- Ctrl-C 产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程结束就可以接受新的命令,启动新的进程;
- Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像 Ctrl-C 这种控制键产生 的信号;
- 前台进程在运行过程中用户随时可能按下 Ctrl-C 而产生一个信号,也就是说该进程的用户空间代码执行 到任何地方都有可能收到 SIGINT 信号而终止,所以信号相对于进程的控制流程来说是异步 (Asynchronous)的;
1.4、信号概念
- 信号是进程之间事件异步通知的一种方式,属于软中断;
1.5、用kill -l命令可以察看系统定义的信号列表
- 每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定义 #define SIGINT 2;
- 编号34以上的是普通信号,编号34以下的是实时信号,本章只讨论编号34以上的信号,不讨论实时信号。这些信号各自在什么条件下 产生,默认的处理动作是什么,在signal(7)中都有详细说明: man 7 signal;
1.6、 信号处理常见方式概览
(sigaction函数稍后详细介绍),可选的处理动作有以下三种:
- 忽略此信号;
- 执行该信号的默认处理动作;
- 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉 (Catch)一个信号;
2、产生信号
2.1、通过终端按键产生信号
SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump,现在我们来验证一 下;
Core Dump
首先解释什么是Core Dump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部 保存到磁 盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误, 事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的, 因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许 产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K: $ ulimit -c 1024;
2.2、调用系统函数向进程发信号
首先在后台执行死循环程序,然后用kill命令给它发SIGSEGV信号;
- 29812是test进程的id。之所以要再次回车才显示 Segmentation fault ,是因为在29812进程终止掉之前 已经回到了Shell提示符等待用户输入下一条命令,Shell不希望Segmentation fault信息和用户的输入交错在一起,所以等用户输入命令之后才显示;
- 指定发送某种信号的kill命令可以有多种写法,上面的命令还可以写成 kill -SIGSEGV 29812 或 kill -11 29812 , 11是信号SIGSEGV的编号。以往遇到的段错误都是由非法内存访问产生的,而这个程序本身没错, 给它发SIGSEGV也能产生段错误;
kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。raise函数可以给当前进程发送指定 的信号(自己给自己发信号);
#include <signal.h>
int kill(pid_t pid, int signo);
int raise(int signo);
这两个函数都是成功返回0,错误返回-1。
abort函数使当前进程接收到信号而异常终止;
#include <stdlib.h>
void abort(void);
就像exit函数一样,abort函数总是会成功的,所以没有返回值;
2.3、由软件条件产生信号
SIGPIPE是一种由软件条件产生的信号,在“管道”中已经介绍过了。本节主要介绍alarm函数和SIGALRM信号;
#include <unistd.h>
unsigned int alarm(unsigned int seconds);
调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号,
该信号的默认处理动作是终止当前进程;
这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数。打个比方,某人要小睡一觉,设定闹钟为30分钟之后 响,20分钟后被人吵醒了,还想多睡一会儿,于是重新设定闹钟为15分钟之后响,“以前设定的闹钟时间还余下的时间”就 是10分钟。如果seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数;
这个程序的作用是1秒钟之内不停地数数,1秒钟到了就被SIGALRM信号终止;
2.4、 硬件异常产生信号
硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除 以0的指令,CPU的运算单元会产生异常,内核将这个异常解释 为SIGFPE信号发送给进程。再比如当前进程访问了非 法内存地址,,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程;
3、信号捕捉初识
#include <stdio.h>
#include <signal.h>
void handler(int sig)
{
printf("catch a sig : %d\n", sig);
}
int main()
{
signal(2, handler); //前文提到过,信号是可以被自定义捕捉的,siganl函数就是来进行
信号捕捉的;
while(1);
return 0;
}
[ketil@localhost code_test]$ ./sig
^Ccatch a sig : 2
^Ccatch a sig : 2
^Ccatch a sig : 2
^Ccatch a sig : 2
^\Quit (core dumped)
[ketil@localhost code_test]$
4、模拟一下野指针异常
//默认行为
[ketil@localhost code_test]$ cat sig.c
#include <stdio.h>
#include <signal.h>
void handler(int sig)
{
printf("catch a sig : %d\n", sig);
}
int main()
{
//signal(SIGSEGV, handler);
sleep(1);
int *p = NULL;
*p = 100;
while(1);
return 0;
}
[ketil@localhost code_test]$ ./sig
Segmentation fault (core dumped)
[ketil@localhost code_test]$
//捕捉行为
[ketil@localhost code_test]$ cat sig.c
#include <stdio.h>
#include <signal.h>
void handler(int sig)
{
printf("catch a sig : %d\n", sig);
}
int main()
{
signal(SIGSEGV, handler);
sleep(1);
int *p = NULL;
*p = 100;
while(1);
return 0;
}
[ketil@localhost code_test]$ ./sig
[ketil@localhost code_test]$ ./sig
catch a sig : 11
catch a sig : 11
catch a sig : 11
由此可以确认,我们在C/C++当中除零,内存越界等异常,在系统层面上,是被当成信号处理的;
5、总结
- 上面所说的所有信号产生,最终都要由OS来进行执行,为什么?OS是进程的管理者;
- 信号的处理是否是立即处理的?在合适的时候;
- 信号如果不是被立即处理,那么信号是否需要暂时被进程记录下来?记录在哪里最合适呢;
- 一个进程在没有收到信号的时候,能否能知道,自己应该对合法信号作何处理呢?
- 如何理解OS向进程发送信号?能否描述一下完整的发送处理过程?
6、阻塞信号
6.1、信号其他相关常见概念
- 实际执行信号的处理动作称为信号递达(Delivery);
- 信号从产生到递达之间的状态,称为信号未决(Pending);
- 进程可以选择阻塞 (Block )某个信号;
- 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作;
- 注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作;
6.2、在内核中的表示
信号在内核中的表示示意图:
- 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作;
- SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞了;
- SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。 如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次 或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。本章不讨论实时信号;
6.3、sigset_t
从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。 因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号 的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有 效”和“无效”的含义是该信号是否处于未决状态。阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略;
6.4、信号集操作函数
sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的;
#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);
- 函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含任何有效信号;
- 函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位,表示 该信号集的有效信号包括系统支持的所有信号;
- 注意,在使用sigset_ t类型的变量之前,一定要调用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号;
这四个函数都是成功返回0,出错返回-1。sigismember是一个布尔函数,用于判断一个信号集的有效信号中是否包含 某种 信号,若包含则返回1,不包含则返回0,出错返回-1;
6.5、sigprocmask
调用函数sigprocmask可以读取或更改进程的信号屏蔽字(阻塞信号集);
#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
返回值:若成功则为0,若出错则为-1;
如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后 根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值;
SIG_BLOCK | set 包含了我们希望添加到当前信号屏蔽字的信号,相当于 mask = mask | set |
SIG_UNBLOCK | set 包含了我们希望从当前信号屏蔽字中解除阻塞的信号,相当于 mask = mask & ~set |
SIG_SETMASK | 设置当前信号屏蔽字为 set 所指向的值,相当于mask = set |
如果调用 sigprocmask 解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达;
6.6、sigpending
#include <signal.h>
sigpending
读取当前进程的未决信号集,通过set参数传出。调用成功则返回0,出错则返回-1。 下面用刚学的几个函数做个实验。
程序如下:
7、捕捉信号
7.1、内核如何实现信号的捕捉
如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行 main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号 SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行 sighandler 函数,sighandler 和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是两个独立的控制流程。 sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复 main函数的上下文继续执行了;
7.2、sigaction
#include <signal.h>
int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);
- sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回- 1。signo 是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体;
- 将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用;
当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用 sa_mask 字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数,本章不详细解释这两个字段,有兴趣可以在了解一下;
8、可重入函数
- main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的 时候,因 为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函 数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从 sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步 之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了;
- 像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称 为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之, 如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。想一下,为什么两个不同的 控制流程调用同一个函数,访问它的同一个局部变量或参数就不会造成错乱?
如果一个函数符合以下条件之一则是不可重入的:
- 调用了malloc或free,因为malloc也是用全局链表来管理堆的;
- 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构;
9、volatile
- 该关键字在C当中我们已经有所涉猎,今天我们站在信号的角度重新理解一下;
[ketil@localhost code_test]$ cat sig.c
#include <stdio.h>
#include <signal.h>
int flag = 0;
void handler(int sig)
{
printf("change flag 0 to 1\n");
flag = 1;
}
int main()
{
signal(2, handler);
while(!flag);
printf("process quit normal\n");
return 0;
}
[ketil@localhost code_test]$ cat Makefile
sig:sig.c
gcc -o sig sig.c #-O2
.PHONY:clean
clean:
rm -f sig
[ketil@localhost code_test]$ ./sig
^Cchage flag 0 to 1
process quit normal
标准情况下,键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 , while 条件不满足,退出循环,进程退出;
[ketil@localhost code_test]$ cat sig.c
#include <stdio.h>
#include <signal.h>
int flag = 0;
void handler(int sig)
{
printf("chage flag 0 to 1\n");
flag = 1;
}
int main()
{
signal(2, handler);
while(!flag);
printf("process quit normal\n");
return 0;
}
[ketil@localhost code_test]$ cat Makefile
sig:sig.c
gcc -o sig sig.c -O2
.PHONY:clean
clean:
rm -f sig
[ketil@localhost code_test]$ ./sig
^Cchage flag 0 to 1
^Cchage flag 0 to 1
^Cchage flag 0 to 1
优化情况下,键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 ,但是 while 条件依旧满足,进程继续运行!但是很明显flag肯定已经被修改了,但是为何循环依旧执行?很明显, while 循环检查的flag, 并不是内存中最新的flag,这就存在了数据二异性的问题。 while 检测的flag其实已经因为优化,被放在了 CPU 寄存器当中。如何解决呢?很明显需要 volatile;
[ketil@localhost code_test]$ cat sig.c
#include <stdio.h>
#include <signal.h>
volatile int flag = 0;
void handler(int sig)
{
printf("chage flag 0 to 1\n");
flag = 1;
}
int main()
{
signal(2, handler);
while(!flag);
printf("process quit normal\n");
return 0;
}
[ketil@localhost code_test]$ cat Makefile
sig:sig.c
gcc -o sig sig.c -O2
.PHONY:clean
clean:
rm -f sig
[ketil@localhost code_test]$ ./sig
^Cchage flag 0 to 1
process quit normal
- volatile 作用:保持内存的可见性,告知编译器,被该关键字修饰的变量,不允许被优化,对该变量的任何操作,都必须在真实的内存中进行操作;
10、SIGCHLD信号
进程一章讲过用wait和waitpid函数清理僵尸进程,父进程可以阻塞等待子进程结束,也可以非阻 塞地查询是否有子进程结束等待清理(也就是轮询的方式)。采用第一种方式,父进程阻塞了就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一 下,程序实现复杂;
其实,子进程在终止时会给父进程发SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可;
请编写一个程序完成以下功能:父进程fork出子进程,子进程调用exit(2)终止,父进程自定义SIGCHLD信号的处理函数, 在其中调用wait获得子进程的退出状态并打印;
事实上,由于UNIX 的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不 会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略通常是有区别的,但这是一个特例。此方法对于Linux可用,但不保证在其它UNIX系统上都可用。请编写程序验证这样做不会产生僵尸进程;
测试代码:
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
void handler(int sig)
{
pid_t id;
while( (id = waitpid(-1, NULL, WNOHANG)) > 0)
{
printf("wait child success: %d\n", id);
}
printf("child is quit! %d\n", getpid());
}
int main()
{
signal(SIGCHLD, handler);
pid_t cid;
if((cid = fork()) == 0)
{//child
printf("child : %d\n", getpid());
sleep(3);
exit(1);
}
while(1)
{
printf("father proc is doing some thing!\n");
sleep(1);
}
return 0;
}