如何用BI工具对数据进行预处理?数据分析的这项技巧你必须掌握。

在当今数字化时代,数据不仅是企业决策的基础,也是创新和发展的关键推动力。在面对庞大而复杂的数据集时,如何进行高效的预处理成为了数据分析领域中至关重要的一步。

ea03357571b301d9438b0023e95a386d.jpeg

在进行数据处理和分析的日常工作中,业务普遍使用Excel和SQL这两个经典的工具。然而,使用这两个工具进行数据处理,在实际的过程中可能遇到的一些问题:

 

Excel:

  • 限制于数据规模: Excel在处理大规模数据时可能会变得缓慢且占用大量内存,导致性能下降。这对于处理数百万行的数据集可能是一个挑战。
  • 手动操作误差: Excel通常需要手动进行数据清理和转换,这增加了人为出错的可能性。公式和数据操作的复制粘贴可能导致错误的结果,特别是在复杂的数据处理任务中。
  • 版本控制问题: 在团队协作中,如果多个人同时编辑Excel文件,容易导致版本冲突,使得数据处理流程难以管理和跟踪。
  • 有限的自动化能力: Excel的自动化功能相对有限,特别是在处理大型、复杂的数据集时,自动化处理和重复利用的能力相对较弱。

 

SQL:

  • 复杂的语法: SQL语法相对复杂,对于初学者来说,学习和理解SQL可能需要一些时间。写复杂的查询语句可能容易出现错误,而调试这些错误可能会耗费时间。
  • 处理字符串操作相对繁琐: 在SQL中,对字符串的处理相对繁琐,尤其是涉及到文本分割、合并和模糊匹配等操作时,可能需要编写复杂的代码。
  • 性能问题: 对于大规模数据集,一些查询可能会导致性能问题,需要优化查询语句或者使用索引来提高效率。
  • 难以处理非结构化数据: SQL更适用于关系型数据库,对于非结构化或半结构化数据的处理相对困难,需要在SQL外引入其他工具。

 

随着数据规模和复杂性的不断增加,以及对实时决策的需求日益迫切,业界逐渐转向更为高效、灵活的BI(商业智能)工具。对比于Excel和SQL在处理大规模、复杂数据时所面临的诸多挑战,BI工具以其强大的自动化和直观性,为用户提供了更为高效和便捷的数据处理解决方案。在这篇文章中,我们就将深入讲解使用BI工具进行数据预处理的关键技巧,希望能为已经引入BI工具的企业员工提供数据分析的帮助与思路!

示例中提到的数据分析模板分享给大家——
https://s.fanruan.com/427eu

零基础快速上手,还能根据需求进行个性化修改哦 


第一步:学会如何调整并简化数据结构

1、调整数据结构

在进行数据分析之前,往往需要对数据结构进行特定的处理,以便更有效地进行后续分析工作。原始数据通常并非直接符合我们分析的需求,因此必须进行一些行列转换的操作,以便调整数据的格式和结构,使其适应分析的要求。

 

在FineBI里,我们通过数据编辑内封装的功能“拆分行列”和“行列转换,迅速、灵活地实现对数据的调整和重组,从而达到快速获得所需分析结果的目的。通过“拆分行列”功能,我们能够将原始数据按照指定的规则进行拆分,从而分离出所需的信息。而“行列转换”则允许我们在数据集中对行与列进行灵活的转换,以满足不同的分析需求。

 

原数据结构:字段内容混杂,不利于开展分析

0168ef8ed310231bfa91f795548e62f8.jpeg

 

处理后数据结构:拆分行列并转换后,字段结构简单清晰

5e8cf68e2ed888efe1cdabaa5ebd2205.jpeg

 

 

2、处理重复行数据

在实际的业务分析过程中,数据质量问题常常成为业务顺利进行分析的最主要障碍。其中,最为常见和棘手的问题之一就是重复行的存在。在处理这些重复行时,我们通常会面临两种主要情况,每一种都需要特定的处理方式。

 

首先,是那种删除任意一行都不会对分析结果产生实质性影响的情况,比如数据中存在类似“A、A、A”的重复行,而只需保留其中的一个“A”即可。针对这种情况,FineBI内封装了“删除重复行”功能,能够在业务分析中快速而便捷地实现这一操作。通过这个功能,我们能够轻松地剔除冗余的数据,以确保数据集的干净整洁,有利于后续准确的业务分析。

 

其次,还存在另一种情况,即需要有选择地保留特定的一行数据。例如,在系统中同一个客户可能有两行不同的数据记录,而在进行分析时,我们可能需要有针对性地选择保留最新录入的一条数据。在这种“A、B、C”中只需取A的场景下,我们首先通过对数据表进行排序,确保最新的数据位于数据表的顶部,再利用“删除重复行”的逻辑,只保留最上方的一行数据,从而达到筛选并保留特定行的目的。这一流程既简洁又有效,为业务分析提供了灵活而可控的数据清洗手段。而表头下拉菜单对字段内容进行统计的功能,也让检查重复行变得更加简单。

 

17c9a4562922c2ed52af13f13ce93fdc.jpeg

功能封装,选择去重字段快速去重

e5d2c4d849acc4555224c427247e0216.jpeg

 

 

3、对null值的处理

在各种业务场景中,处理null值是一种不可避免的挑战,而不同的业务场景往往需要采用截然不同的处理策略。

当面临大规模数据集时,如果null值的出现相对较少,而这些空值并不会对总和或平均值等计算产生显著波动,那么我们通常可以直接忽略这些null值。这种处理方式在数据量庞大的情况下能够有效减少对计算结果的影响。

另一方面,对于那些在处理中希望将null值视为脏数据,从而整行剔除的情况,我们可以借助表头的快捷过滤功能迅速排除这些空值。这种方法通过使用表头的筛选工具,能够方便地将包含null值的整行数据剔除,从而确保数据的整洁性和准确性。

 

08a83d4f3cb014f5cd9a81ff36d87bc7.jpeg

 

以上都是简单的场景处理,而在实际业务中,可能会遇到null值存在业务含义的情况。

例如示例中的数据,这位同学英语成绩为空的原因可能是他本身就因病没参加考试,此时既不能放着不管,也不能直接删去他的这一行数据。

对于这种情况,我们要做的是针对某一类特殊情况打上对应的标签,以便在后续的分析中,有选择地过滤。在FineBI中,可以用“新增公式列”或者更方便的“条件标签列”来实现。

 

e0961f4cb723b8790053492a3cd3858f.jpeg

对存在空值成绩的同学打上缺考标签

 

第二步:学会如何对多张表进行合并分析

多表合并分析是指在数据分析过程中,将来自多个不同数据表的信息合并在一起进行综合分析的方法。在实际业务或研究中,数据通常分布在多个表格中,而多表合并分析的目的是为了获取更全面、更综合的信息,从而得出更深刻的结论。

这个过程通常包括以下几个步骤:

  • 数据连接(Joining): 多表合并分析的第一步是通过某种关联关系将多个表格中的数据连接起来。这通常需要通过共享的关键字段(例如,客户ID、产品编号等)来建立连接,以确保正确关联相关数据。
  • 数据合并(Merging): 一旦连接建立,接下来的步骤是将相关表格的数据合并成一个更大的数据集。这可以通过不同的合并方法实现,例如内连接、左连接、右连接或外连接,取决于分析者对数据的需求。
  • 数据分析(Analysis): 合并后的数据集可以用于更深入的分析,例如生成统计指标、建立模型、进行趋势分析等。由于数据来自多个源头,多表合并分析有助于获得更全局的视角,使得分析结果更加全面和有说服力。

 

实际业务中,我们所需要的数据往往来自于多张表。在分析前,另外一个大难题就是,如何合并这些表。我们为刚上手BI的业务人员,归纳了以下两种合并的场景。

我们首先想象合并后表的状态,一种是表格上下扩展,分析的字段并没有增加,但是行数变多了。此时可以使用“上下合并”快速完成表的拼接。

37c2b878f0f601db3447649d45107b6b.jpeg

表格上下扩展,分析的字段并没有增加

 

另一种复杂的情况是合并后的表格是横向扩展的,即分析的字段变多了。

在讨论左右合并前,我们不妨先看看“其他表添加列”

也许你对这个名字摸不着头脑,但是肯定不会对Excel的Vlookup、Sumif感到陌生

没错,这个功能可以将其他表的指标字段进行聚合后合并(Sumif)或是查询对应的维度匹配到这张表中(Vlookup)。

624a3793942290f7c8bb3fa8bb972fe3.jpeg

成绩根据要求求和后作为一个新的字段,依据“姓名”合并到本表中

 

而对SQL老练的玩家来说,left join、right join…..可能更加亲切,此时可以选择BI数据编辑中的“左右合并”功能,与SQL的逻辑一致,且比SQL的操作更加便捷,并不需要代码来实现,有基础的朋友可以很快上手。

 

第三步:学会新增计算及分析指标

在简化数据结构、并将多表进行合并处理后,我们需要停下来,审视一下自己所分析的问题,以及对应这个问题所需要的指标是否已经在表中了。

一般来说,事情可能没有这么顺利,当然这也在常理之中,比如在零售行业的分析中,往往需要我们自己计算毛利率、增长率等指标。

在开始分析前,我们可以将这些计算指标增添到数据表中。怎么做呢?

首先是最令人熟悉的“新增公式列”,这个功能和Excel中写公式一样,只需要输入对应的公式就能产生对应的字段。接着是一些常用计算的封装功能,“新增汇总列”可以帮助我们进行简单的聚合计算。

选择对应的分组以及计算方式,对指标进行计算

“条件标签列”这个功能则解决了众多分析师日常最头疼的IF嵌套问题,不需要写嵌套了七八层的IF公式,只需通过鼠标配置不同的条件,就可以对数据赋予不同的标签(值)。

990a72037180d51a003137fe0dff053d.jpeg

通过添加特定条件筛选数据并赋予对应的标签

 

第四步:学会对数据进行校验

刚接触BI的朋友遇到最大的问题不仅在于不理解BI许多功能的计算逻辑,更在于由此产生的对数据处理结果的不信任。“我这么做,出来的结果是对的吗?”是新手朋友最常问自己的一个问题。为了方便用户进行校验,数据编辑界面也内置了很多便利的功能。

 

1、表头数据校验

选中字段后,可以在左下角快速获得平均值、总和、记录数等数据,我们可以通过对熟悉的数据进行校验,结合经验来判断是否正确。

a7539bbf327447e7ccda53735e3a73c6.jpeg

数学成绩字段校验得出平均分85.92,符合班级历史平均水平

 

2、步骤区关键步骤取消应用

BI可以在处理步骤间插入新的步骤,同时也可以设置某些步骤暂时取消生效。

利用这一点,我们可以通过过滤出部分关键数据,并取消应用一些疑惑的关键步骤来进行试错。就如同刚学数学时习惯性的多次验算一样,虽然对老玩家略显繁琐,但的确是最令新手放心的定心丸。

ccc82e6a030d0d99807c3b8a3ba0b0de.jpeg

通过表头快速过滤出少部分数据进行“抽样检测”

dfeb4d57b54160f17b7491b08e1dd689.jpeg

灵活运用步骤区的小技巧帮助自己快速检查

18f63f1205c243cb9d109273a929a26b.jpeg

 

结语

综上所述,BI工具为数据预处理提供了强大而灵活的平台,通过掌握其中的技巧,我们能够更加高效地应对复杂的数据情境,为业务决策提供更有力的支持。在这个数据驱动的时代,深谙数据预处理之道,将成为每位数据分析专业人士必须具备的重要技能。不仅能够提升分析效率,更能够确保我们从数据中挖掘出准确、深刻的见解,为业务的成功铺平道路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/450295.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于JavaWeb开发的私人牙科诊所管理系统【附源码】

基于JavaWeb开发的私人牙科诊所管理系统[附源码] 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种定制系统 &…

嵌入式面经-ARM体系架构-寄存器与异常处理

ARM寄存器组织 寄存器概念 寄存器是处理器内部的存储器,没有地址 寄存器作用 一般用于暂时存放参与运算的数据和运算结果 在某个特定模式下只能使用当前模式下的寄存器,一个模式下特有的寄存器别的模式下不能使用 一共是40个寄存器 寄存器分类 通用寄…

勾八头歌之数据科学导论—数据预处理

第1关:引言-根深之树不怯风折,泉深之水不会涸竭 第2关:数据清理-查漏补缺 import numpy as np import pandas as pd import matplotlib.pyplot as pltdef student():# Load the CSV file and replace #NAME? with NaNtrain pd.read_csv(Tas…

http协议中的强缓存与协商缓存,带图详解

此篇抽自本人之前的文章:http面试题整理 。 别急着跳转,先把缓存知识学会了~ http中的缓存分为两种:强缓存、协商缓存。 强缓存 响应头中的 status 是 200,相关字段有expires(http1.0),cache-control&…

C++中类模板的定义和使用

类模板的定义和使用 引言类模板声明和定义有问有答 示例运行结果注意参数传递ref 引言 类模板就是一个模板,但是数据可以适用多种类型。类模板使用时需要模板的特例化,就变成了模板类。 本文只要是记录一下模板的使用。同时对于引用和右值引用传参做一下…

几个redis常用命令

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 ping:测试连接是否存活 例如:测试当前redis数据库是否存活 127.0.0.1:6379> ping #返回PONG&am…

RHEL9 DNF/YUM仓库管理软件包

DNF/YUM仓库管理软件包 一个基于RPM包的软件包管理器能够从指定的服务器自动下载RPM包并且安装,自动处理依赖性关系,并且一次性安装所有依赖的软件包C/S模式 Server服务端提供RPM软件包与数据库文件repodataClient客户端使用dnf仓库 常用组合 组合参…

半导体湿法技术有什么优势

湿法蚀刻工艺的原理是使用化学溶液将固体材料转化为液体化合物。选择性非常高, 因为使用的化学品可以非常精确地适应单个薄膜。对于大多数解决方案,选择性大于100:1。 批量蚀刻 在批量蚀刻中,可以同时蚀刻多个晶圆,过滤器和循环…

返回值不同算方法重载么?为什么?

1、典型回答 返回值不同不算方法重载 方法重载(Overloading)是指在同一个类中定义了多个同名方法,但它们的参数列表不同,方法重载要求方法: 名称相同参数类型、参数个数或参数顺序,至少有一个不同 方法…

【SQL】601. 体育馆的人流量(with as 临时表;id减去row_number()思路)

前述 知识点学习: with as 和临时表的使用12、关于临时表和with as子查询部分 题目描述 leetcode题目:601. 体育馆的人流量 思路 关键:如何确定id是连续的三行或更多行记录 方法一: 多次连表,筛选查询方法二&…

普发Pfeiffer氦质谱检漏仪HLT260/270系列电路图电路板图纸和接线针脚含义非常详细内部国外资料中英操作说明培训PPT课件打包13个文档

普发Pfeiffer氦质谱检漏仪HLT260/270系列电路图电路板图纸和接线针脚含义非常详细内部国外资料中英操作说明培训PPT课件打包13个文档

使用 gin-api-mono 创建简单的 TODO 服务

介绍 首先介绍一下 gin-api-mono 这个项目,这个项目是由 go-gin-api 作者基于用户的需求衍生出来的一个项目。因为有些用户觉得 go-gin-api 是一个前后端都有的一个开源项目,对于很多用户来说,前端部分是不需要的,所以作者看到这…

护眼灯什么价位的好用?推荐五款好价护眼台灯

如今,我们不难发现许多年轻人早早地就戴上了眼镜,近视问题日益严重。在改善近视问题的众多因素中,营造适宜的照明环境,特别是选择一款合适的护眼台灯,显得尤为重要。然而,对于初次选购护眼台灯的人来说&…

通过sqoop把hive数据到mysql,脚本提示成功,mysql对应的表中没有数

1、脚本执行日志显示脚本执行成功,读写数量不为0 2、手动往Mysql对应表中写入数据十几秒后被自动删除了 问题原因: 建表时引擎用错了,如下图所示 正常情况下应该用InnoDB

Request和Response对象

Request和Response都是Servlet的service方法的参数,Request负责获取请求数据,而Response负责设置相应数据~ 一.Request 1.继承体系 Tomcat负责解析数据,因此由Tomcat来提供实现类~ 2.获取请求数据 请求行 请求头 请求体 需要注意的是只有…

【Greenhills】MULTI IDE工程管理的目录结构

【更多软件使用问题请点击亿道电子官方网站查询】 1、 文档目标 关于的GHS的Project Manager中工程的目录结构的组成 2、 问题场景 在GHS中去创建项目后,对于在Project Manager窗口中的目录结构不太清晰,目录中有多个gpj文件,无法确认哪个是…

掼蛋如何识人

掼蛋的吸引力在于其充满变化和挑战性。它不仅仅可以考验玩家的技巧、智慧和决策能力,也是一种社交活动。通过玩家之间的出牌习惯和方式,能快速帮助我们推测出对方的思维方式和性格特征。 一、保守型 这类玩家按部就班,在游戏开始的时候&#…

【JAVA】HashMap扩容性能影响及优化策略

🍎个人博客:个人主页 🏆个人专栏:JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 结语 我的其他博客 前言 在软件开发中,HashMap是一种常用的数据结构,但在处理大量数据时,其扩容…

广西省行政村边界shp数据/广西省乡镇边界/广西省土地利用分类数据/径流分布

广西壮族自治区,地处中国南部,北回归线横贯中部。南北以贺州——东兰一线为界,此界以北属中亚热带季风,以南属南亚热带季风。 数据范围:全国行政区划-行政村界 数据类型:面状数据,全国各省市县…

华为数通方向HCIP-DataCom H12-821题库(多选题:141-160)

第141题 以下关于802.1X认证的触发机制,描述正确的有? A、802.1X认证不能由认证设备(如802.1交换机)发起 B、802.1X客户端可以组播或广播方式触发认证 C、认证设备可以以组播或单播方式触发认证 D、802.1X认证只能由客户端主动发起 【参考答案】BC 【答案解析】 第142题 以…