图论(二)之最短路问题

最短路

Dijkstra求最短路

文章目录

  • 最短路
    • Dijkstra求最短路
      • 栗题
      • 思想
      • 题目
      • 代码
      • 代码如下
      • bellman-ford
      • 算法分析
      • 只能用bellman-ford来解决的题型
      • 题目
      • 完整代码
    • spfa求最短路
      • spfa 算法思路
        • 明确一下松弛的概念。
        • spfa算法文字说明:
        • spfa 图解:
      • 题目
      • 完整代码
      • 总结tips
    • spfa判断负环
      • 算法分析
      • 代码如下
      • Floyd求最短路
      • 模拟过程
          • 链接:[https://www.acwing.com/problem/content/856/](https://www.acwing.com/problem/content/856/)
      • 题目
      • 代码如下

栗题

https://www.acwing.com/problem/content/851/

https://www.acwing.com/problem/content/852/

思想

迪杰斯特拉算法采用的是一种贪心的策略。

求源点到其余各点的最短距离步骤如下:

  1. 用一个 dist 数组保存源点到其余各个节点的距离,dist[i] 表示源点到节点 i 的距离。初始时,dist 数组的各个元素为无穷大。
    用一个状态数组 state 记录是否找到了源点到该节点的最短距离,state[i] 如果为真,则表示找到了源点到节点 i 的最短距离,state[i] 如果为假,则表示源点到节点 i 的最短距离还没有找到。初始时,state 各个元素为假。

03.png

  1. 源点到源点的距离为 0。即dist[1] = 0。

04.png

  1. 遍历 dist 数组,找到一个节点,这个节点是:没有确定最短路径的节点中距离源点最近的点。假设该节点编号为 i。此时就找到了源点到该节点的最短距离,state[i] 置为 1。

    05.png

  2. 遍历 i 所有可以到达的节点 j,如果 dist[j] 大于 dist[i] 加上 i -> j 的距离,即 dist[j] > dist[i] + w[i][j](w[i][j] 为 i -> j 的距离) ,则更新 dist[j] = dist[i] + w[i][j]。

    06.png

  3. 重复 3 4 步骤,直到所有节点的状态都被置为 1。

    071.png

  4. 此时 dist 数组中,就保存了源点到其余各个节点的最短距离。

    13.png

题目

在这里插入图片描述

代码

#include<iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510, M = 100010;

int h[N], e[M], ne[M], w[M], idx;//邻接表存储图
int state[N];//state 记录是否找到了源点到该节点的最短距离
int dist[N];//dist 数组保存源点到其余各个节点的距离
int n, m;//图的节点个数和边数

void add(int a, int b, int c)//插入边
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void Dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));//dist 数组的各个元素为无穷大
    dist[1] = 0;//源点到源点的距离为置为 0
    for (int i = 0; i < n; i++)
    {
        int t = -1;
        for (int j = 1; j <= n; j++)//遍历 dist 数组,找到没有确定最短路径的节点中距离源点最近的点t
        {
            if (!state[j] && (t == -1 || dist[j] < dist[t]))
                t = j;
        }

        state[t] = 1;//state[i] 置为 1。

        for (int j = h[t]; j != -1; j = ne[j])//遍历 t 所有可以到达的节点 i
        {
            int i = e[j];
            dist[i] = min(dist[i], dist[t] + w[j]);//更新 dist[j]
        }
    }
}

int main()
{
    memset(h, -1, sizeof(h));//邻接表初始化

    cin >> n >> m;
    while (m--)//读入 m 条边
    {
        int a, b, w;
        cin >> a >> b >> w;
        add(a, b, w);
    }

    Dijkstra();
    if (dist[n] != 0x3f3f3f3f)//如果dist[n]被更新了,则存在路径
        cout << dist[n];
    else
        cout << "-1";
}

优化

下面进行优化,可以看出上方时间复杂度为 O ( n 2 ) O(n^2) O(n2), 查找距离源点最近的点没有被确定的点t需要 O ( n ) O(n) O(n),遍历t所有可以到达的节点 i需要 O ( n ) O(n) O(n), 而这可以进行优化

  • 若是用小根堆(优先队列)进行存储, 那么每次找距离最近的那个点t只需要 O ( 1 ) O(1) O(1),而遍历t所有可以到达的需要 O ( m l o g n ) O(mlog_n) O(mlogn)因为堆的修改需要 O ( l o g n ) O(log_n) O(logn)

代码如下

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 150010;
//用邻接表的话重边可以不用考虑
typedef pair<int, int> PII;
int h[N], w[N], ne[N], idx, e[N];
int n, m;
bool st[N];
int dist[N];
void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int dijkstra() {
    memset(dist, 0x3f3f3f3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});  //{距离,编号}
    while(heap.size()) {
        auto t = heap.top();
        heap.pop();
        
        int no = t.second, distance = t.first;
        if(st[no])  continue;   //若此编号已经找到距离,那么跳过
        st[no] = true;
        for(int i = h[no]; i != -1; i = ne[i]) {
            int j = e[i];
            if(dist[j] > dist[no] + w[i]) {
                dist[j] = dist[no] + w[i];
            heap.push({dist[j], j});
            }
        }
        
    }
    
    if(dist[n] == 0x3f3f3f3f)   return -1;
    return dist[n];
}

int main() {
    scanf("%d%d", &n, &m);
    //邻接表第一步的必备
    memset(h, -1, sizeof h);
    while(m --) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    int t = dijkstra();
    cout << t;
    
    return 0;
}

bellman-ford

算法分析

1、问题:为什么Dijkstra不能使用在含负权的图中?
(这是以前错误的分析,若看完这个例子分析觉得正确的说明对最短路理解得还不够透彻,这里不做删除)
分析:如图所示:
若通过Dijkstra算法可以求出从1号点到达4号点所需的步数为3 (每次选择离源点最短距离的点更新其他点)
但实际上从 1 号点到达 4 号点所需步数为 1 (1 –> 2 –> 3),因此不能使用 Dijkstra 解决含负权图的问题

200fb33caef2d3ce435369aaa777f83.png

正确的分析
Dijkstra算法的3个步骤

1、找到当前未标识的且离源点最近的点t
2、对t号点点进行标识
3、用t号点更新其他点的距离
反例

8886031fd08869a6757d4c704c6f355.png

结果:

dijkstra算法在图中走出来的最短路径是1 -> 2 -> 4 -> 5,算出 1 号点到 5 号点的最短距离是2 + 2 + 1 = 5,然而还存在一条路径是1 -> 3 -> 4 -> 5,该路径的长度是5 + (-2) + 1 = 4,因此 dijkstra 算法失效

dijkstra详细步骤

  • 初始dist[1] = 0`

  • 找到了未标识且离源点1最近的结点1,标记1号点,用1号点更新其他所有点的距离,2号点被更新成dist[2] = 2,3号点被更新成

    dist[3] = 5

  • 找到了未标识且离源点1最近的结点2,标识2号点,用2号点更新其他所有点的距离,4号点被更新成dist[4] = 4

  • 找到了未标识且离源点1最近的结点4,标识4号点,用4号点更新其他所有点的距离,5号点被更新成dist[5] = 5

  • 找到了未标识且离源点1最近的结点3,标识3号点,用3号点更新其他所有点的距离,4号点被更新成dist[4] = 3
    结束

  • 得到1号点到5号点的最短距离是5,对应的路径是1 -> 2 -> 4 -> 5,并不是真正的最短距离

2、什么是bellman - ford算法?
Bellman - ford 算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在 n-1 次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。
(通俗的来讲就是:假设 1 号点到 n 号点是可达的,每一个点同时向指向的方向出发,更新相邻的点的最短距离,通过循环 n-1 次操作,若图中不存在负环,则 1 号点一定会到达 n 号点,若图中存在负环,则在 n-1 次松弛后一定还会更新)

3、bellman - ford算法的具体步骤

for n次
	for 所有边 a,b,w (松弛操作)
		dist[b] = min(dist[b],back[a] + w)

注意:back[] 数组是上一次迭代后 dist[] 数组的备份,由于是每个点同时向外出发,因此需要对 dist[] 数组进行备份,若不进行备份会因此发生串联效应,影响到下一个点

为什么需要back[a]数组
为了避免如下的串联情况, 在边数限制为一条的情况下,节点3的距离应该是3,但是由于串联情况,利用本轮更新的节点2更新了节点3的距离,所以现在节点3的距离是2。

2.PNG

正确做法是用上轮节点2更新的距离–无穷大,来更新节点3, 再取最小值,所以节点3离起点的距离是3。

3.PNG

for (int i = 0; i < k; i ++ )
{
    memcpy(backup, dist, sizeof dist);
    for (int j = 0; j < m ; j ++ )
    {
        int a = edges[j].a, b = edges[j].b, w = edges[j].w;
        dist[b] = min(dist[b], backup[a] + w);
    }
}

4、在下面代码中,是否能到达n号点的判断中需要进行if(dist[n] > INF/2)判断,而并非是if(dist[n] == INF)判断,原因是INF是一个确定的值,并非真正的无穷大,会随着其他数值而受到影响,dist[n]大于某个与INF相同数量级的数即可

5、bellman - ford算法擅长解决有边数限制的最短路问题
时间复杂度 O(nm)

其中n为点数,m为边数

作者:小呆呆
链接:https://www.acwing.com/solution/content/6320/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

只能用bellman-ford来解决的题型

有边数限制的最短路

这里题目说了可能为负权边或者负权回路,那么就不能用dijkstraspfa算法

dijkstra不能解决负权边是因为 dijkstra要求每个点被确定后st[j] = true,dist[j]就是最短距离了,之后就不能再被更新了(一锤子买卖),而如果有负权边的话,那已经确定的点的dist[j]不一定是最短了

题目

在这里插入图片描述

完整代码

```cpp
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 10010;

struct Edge
{
    int a, b, c;
}edges[M];

int n, m, k;
int dist[N];
int last[N];

void bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);

    dist[1] = 0;
    for (int i = 0; i < k; i ++ )
    {
        memcpy(last, dist, sizeof dist);
        for (int j = 0; j < m; j ++ )
        {
            auto e = edges[j];
            dist[e.b] = min(dist[e.b], last[e.a] + e.c);
        }
    }
}

int main()
{
    scanf("%d%d%d", &n, &m, &k);

    for (int i = 0; i < m; i ++ )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        edges[i] = {a, b, c};
    }

    bellman_ford();

    if (dist[n] > 0x3f3f3f3f / 2) puts("impossible");
    else printf("%d\n", dist[n]);

    return 0;
}

```

spfa求最短路

spfa 算法思路

明确一下松弛的概念。
  • 考虑节点u以及它的邻居v,从起点跑到v有好多跑法,有的跑法经过u,有的不经过。

  • 经过u的跑法的距离就是dist[u]+u到v的距离。

  • 所谓松弛操作,就是看一看dist[v]和dist[u]+u到v的距离哪个大一点。

  • 如果前者大一点,就说明当前的不是最短路,就要赋值为后者,这就叫做松弛。

spfa算法文字说明:
  • 一个队列,初始时队列里只有起始点。

  • 再建立一个数组记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。

  • 再建立一个数组,标记点是否在队列中。

  • 队头不断出队,计算始点起点经过队头到其他点的距离是否变短,如果变短且被点不在队列中,则把该点加入到队尾。

  • 重复执行直到队列为空。

  • 在保存最短路径的数组中,就得到了最短路径。

spfa 图解:
  • 给定一个有向图,如下,求A~E的最短路。

1.png

  • 源点A首先入队,然后A出队,计算出到BC的距离会变短,更新距离数组,BC没在队列中,BC入队

2.png

  • B出队,计算出到D的距离变短,更新距离数组,D没在队列中,D入队。然后C出队,无点可更新。

3.png

  • D出队,计算出到E的距离变短,更新距离数组,E没在队列中,E入队。

  • 4.png

  • E出队,此时队列为空,源点到所有点的最短路已被找到,A->E的最短路即为8

    5.png

题目

https://www.acwing.com/problem/content/853/

在这里插入图片描述

完整代码

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 100010;
int w[N], h[N], idx, ne[N], e[N];
int n, m;
int dist[N];    //各点到源点的距离
bool st[N];
void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int spfa() {
    memset(dist, 0x3f3f3f3f, sizeof dist);
    dist[1] = 0;
    queue<int> q;    
    q.push(1);
    
    st[1] = true;   //代表在队列中了
    while(q.size()) {
        auto t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if(dist[j] > dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                if(!st[j]) {
                    q.push(j);
                    st[j] = true;   //在队列中了
                }
            }
        }
    }
    return dist[n];
}

int main() {
    memset(h, -1, sizeof h);
    cin >> n >> m;
    while(m --) {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        add(a, b, w);
    }
    int res = spfa();
    if(res == 0x3f3f3f3f)   cout << "impossible";
    else cout << res;
    
    return 0;
}

总结tips

在这里插入图片描述


spfa判断负环

https://www.acwing.com/problem/content/854/

算法分析

使用spfa算法解决是否存在负环问题

求负环的常用方法,基于SPFA,一般都用方法 2(该题也是用方法 2):

  • 方法 1:统计每个点入队的次数,如果某个点入队n次,则说明存在负环-
  • 方法 2:统计当前每个点的最短路中所包含的边数,如果某点的最短路所包含的边数大于等于n,则也说明存在环
  1. dist[x] 记录虚拟源点到x的最短距离

  2. cnt[x] 记录当前x点到虚拟源点最短路的边数,初始每个点到虚拟源点的距离为0,只要他能再走n步,即cnt[x] >= n,则表示该图中一定存在负环,由于从虚拟源点到x至少经过n条边时,则说明图中至少有n + 1个点,表示一定有点是重复使用

  3. dist[j] > dist[t] + w[i],则表示从t点走到j点能够让权值变少,因此进行对该点j进行更新,并且对应cnt[j] = cnt[t] + 1,往前走一步

注意:该题是判断是否存在负环,并非判断是否存在从1开始的负环,因此需要将所有的点都加入队列中,更新周围的点

故只需要对上方代码稍做改动即可:

代码如下

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 100010;
int w[N], h[N], idx, ne[N], e[N];
int n, m;
int dist[N];    //各点到源点的距离
int cnt[N]; //存储边的个数
bool st[N];
void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int spfa() {
    memset(dist, 0x3f3f3f3f, sizeof dist);	
    dist[1] = 0;			
    queue<int> q;    
    for(int i = 1; i <= n; i++) {
        st[i] = true;
        q.push(i);
    }

    while(q.size()) {
        auto t = q.front();
        q.pop();
        st[t] = false;

        for(int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if(dist[j] > dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if(cnt[j] > n)  return true;
                if(!st[j]) {
                    q.push(j);
                    st[j] = true;   //在队列中了
                }
            }
        }
    }
    return false;
}

int main() {
    memset(h, -1, sizeof h);
    cin >> n >> m;
    while(m --) {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        add(a, b, w);
    }
    bool res = spfa();
    if(res) cout << "Yes";
    else cout << "No";

    return 0;
}


Floyd求最短路

求多源最短路

通过中转动态规划来递推出最短路径距离

ij经过k,通过三重循环来实现

初始化自环为0,其他为INF

对于重边的情况下,我们初始化取最小距离

模拟过程

在这里插入图片描述

在这里插入图片描述

链接:https://www.acwing.com/problem/content/856/

题目

在这里插入图片描述

代码如下

using namespace std;
const int N = 210, INF = 1e9;
int n, m, Q;
int d[N][N];
void floyd() {
    for(int k = 1; k <= n; k++)		//依次经过1~n中的n各点进行中转
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main() {
    cin >> n >> m >> Q;
    //初始化处理重边和自环
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            if(i == j)  d[i][j] = 0;
            else d[i][j] = INF;
    
    while(m --) {
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        d[x][y] = min(d[x][y], z);
    }
    floyd();
    while(Q --) {
        int a, b;
        scanf("%d%d", &a, &b);
        int res = d[a][b];
        if(res > INF / 2) printf("impossible\n");
        else cout << res << '\n';
    }
    
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/449383.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#/WPF 清理任务栏托盘图标缓存

在我们开发Windows客户端程序时&#xff0c;往往会出现程序退出后&#xff0c;任务还保留之前程序的缓存图标。每打开关闭一次程序&#xff0c;图标会一直增加&#xff0c;导致托盘存放大量缓存图标。为了解决这个问题&#xff0c;我们可以通过下面的程序清理任务栏托盘图标缓存…

Python 导入Excel三维坐标数据 生成三维曲面地形图(面) 4-1、线条平滑曲面(原始图形)

环境和包: 环境 python:python-3.12.0-amd64包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 代码: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata fr…

案例分析篇03:一篇文章搞定软考设计模式考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12601310.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…

WorkPlus Meet提供高度安全的私有化会议解决方案,保护企业隐私

在企业内部沟通和机密信息传递方面&#xff0c;保护企业的隐私和保证会议质量是至关重要的。作为一款私有化会议解决方案&#xff0c;WorkPlus Meet以其卓越的性能和高度安全的特性&#xff0c;助力企业建立安全可靠的私有化会议平台。 为何选择WorkPlus Meet作为私有化会议的安…

Editor.md-编辑器

这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…

msfconsole中db_namp的使用方法以及如何让msf连接数据库

一、db_nmap使用方法 1.打开数据库 1.1查看数据库postgresql连接状态 systemctl status postgresql查看数据库postgresql连接状态、 1.2启动postgresql systemctl start postgresql启动postgresql 1.3初始化 msfdb init初始化 2.C段扫描(db_nmap的使用) 2.1 db_nmap -sP 192…

多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测

多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测 目录 多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介…

wxss和css的区别

目录 1. 语法差异 2. 尺寸单位 3. 样式导入 WXSS 示例代码&#xff1a; CSS 示例代码&#xff1a; 4. 组件和属性的支持 总结 WXSS (WeiXin Style Sheets) 和 CSS (Cascading Style Sheets) 都是用于描述文档样式的语言&#xff0c;但它们在微信小程序和网页开发中有一些…

部署私有KMS服务器,并设置自动激活Windows和office

介绍 vlmcsd是一个KMS激活服务器的模拟器&#xff0c;可以在Windows Server之外的平台上部署自己的KMS服务器。它是一个开源项目&#xff0c;由Wind4开发&#xff0c;目前在Linux上运行&#xff08;包括Android、FreeBSD、Solaris、Minix、Mac OS、iOS和Windows等&#xff09;…

基于cnn的卷机神经网络的项目毕业课题实践应用(毕业选题-深度学习-卷及神经网络)

这些项目可以作为毕业课题选择&#xff0c;共计超过20个&#xff1a; 往期热门项目回顾&#xff1a; 计算机视觉项目大集合 改进的yolo目标检测-测距测速 路径规划算法 图像去雨去雾目标检测测距项目 交通标志识别项目 yolo系列-重磅yolov9界面-最新的yolo 姿态识别…

OSI七层模型TCP四层模型横向对比

OSI 理论模型&#xff08;Open Systems Interconnection Model&#xff09;和TCP/IP模型 七层每一层对应英文 应用层&#xff08;Application Layer&#xff09; 表示层&#xff08;Presentation Layer&#xff09; 会话层&#xff08;Session Layer&#xff09; 传输层&#x…

javaEE11(servlet课后习题1,3(将思路实现一下))

1.在第5章课后习题2基础上&#xff0c;基于jspservletjavabean实现学生表的增删改查。 数据处理交给Servlet package servlet;import java.io.IOException;import java.io.PrintWriter;import java.util.List;import javax.servlet.ServletException;import javax.servlet.an…

LeetCode707:设计链表

题目描述 实现 MyLinkedList 类&#xff1a; MyLinkedList() 初始化 MyLinkedList 对象。 int get(int index) 获取链表中下标为 index 的节点的值。如果下标无效&#xff0c;则返回 -1 。 void addAtHead(int val) 将一个值为 val 的节点插入到链表中第一个元素之前。在插入完…

Word中解决插入脚注导致的分页位置错误问题

先放一个截图&#xff1a; 上面的截图中&#xff0c;样式为标题3的段落“四、固执的念头”前插入了连续型分节符&#xff0c;并且该分节符的样式为正文&#xff0c;前后的正文段落中有脚注&#xff0c;结果在分页时&#xff0c;标题3段落“四、固执的念头”后的正文段落自动进入…

HTML 语义化:构建优质网页的关键

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

卷积神经网络CNN(一篇文章 理解)

目录 一、引言 二、CNN算法概述 1 卷积层 2 池化层 3 全连接层 三、CNN算法原理 1 前向传播 2 反向传播 四、CNN算法应用 1 图像分类 2 目标检测 3 人脸识别 六、CNN的优缺点 优点&#xff1a; 1 特征提取能力强 2 平移不变性 3 参数共享 4 层次化表示 缺点…

问题解决:NPM 安装 TypeScript出现“sill IdealTree buildDeps”

一、原因&#xff1a; 使用了其他镜像&#xff08;例如我使用了淘宝镜像 npm config set registry https://registry.npm.taobao.org/ &#xff09; 二、解决方法&#xff1a; 1.切换为原镜像 npm config set registry https://registry.npmjs.org 安装typescript npm i …

ListBox显示图片的一些问题

相关&#xff1a;http://t.csdnimg.cn/xTnu8 显示图片的方案就是&#xff1a;自定义一个Photo类&#xff0c;里面有属性Source&#xff1b;View再绑定ViewModel中的Photo集合&#xff0c;再到View中给ListView设置数据模板 关键点&#xff1a;这样做很容易忘记写数据模板 数据…

案例分析篇07:数据库设计相关28个考点(23~28)(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12601310.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…

AWS Database Migration Service 助力数据库搬迁

在业务出海的过程中&#xff0c;少不了的就是云迁移&#xff0c;但在云迁移的过程中其中最重要的一环就是数据库。通常迁移的成功就取决于数据&#xff0c;如果应用成功搬迁&#xff0c;数据库没过来也是无用功。因此如何快速、安全的进行数据库搬迁也成为一大难题。九河云公司…