YOLOv5-Openvino-ByteTrack【CPU】

纯检测如下:
YOLOv5-Openvino和ONNXRuntime推理【CPU】
YOLOv6-Openvino和ONNXRuntime推理【CPU】
YOLOv8-Openvino和ONNXRuntime推理【CPU】
YOLOv9-Openvino和ONNXRuntime推理【CPU】

注:YOLOv5和YOLOv6代码内容基本一致!
全部代码Github:https://github.com/Bigtuo/YOLOv8_Openvino

1 环境:

CPU:i5-12500
Python:3.8.18
VS2019
注:Bytetrack中的lap和cython_bbox库需要编译安装,直接安装报错,故下载VS2019。

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv5和ByteTrack原理

YOLOv5详解
Github:https://github.com/ultralytics/yolov5

ByteTrack官网
ByteTrack算法步骤详解

3.1 安装lap和cython_bbox

1. lap
cd lap-0.4.0
python setup.py install

2. cython_bbox【上传的文件可以直接进行第4步】
pip install cython -i https://pypi.tuna.tsinghua.edu.cn/simple【需先安装】
cd cython_bbox-0.1.3
(1)下载cython-bbox
(2)解压文件
(3)【已修改】在解压后的目录中,找到steup.py 文件,把extra_compile_args=[-Wno-cpp’],修改为extra_compile_args = {‘gcc’: [/Qstd=c99’]}
(4)在解压文件目录下运行

python setup.py build_ext install

4 YOLOv5+ByteTrack主代码

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>是/否跟踪—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 8400×3, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400×3表示(80×80+40×40+20×20)×3,不同于v8与v9采用类别里面最大的概率作为置信度score;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls);
跟踪输入维度:(-1, 6),其中第二个维度6表示(x1, y1, x2, y2, conf, cls);
跟踪输出维度:(-1, 6),其中第二个维度6表示(x1, y1, x2, y2, conf, ids)。

注:YOLOv6_1.0换模型文件可直接使用!

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU

import copy
from bytetrack.byte_tracker import BYTETracker

# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
              'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
                'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
                  'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
                    'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
                      'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
                        'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']


class OpenvinoInference(object):
    def __init__(self, onnx_path):
        self.onnx_path = onnx_path
        ie = Core()
        self.model_onnx = ie.read_model(model=self.onnx_path)
        self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")
        self.output_layer_onnx = self.compiled_model_onnx.output(0)

    def predict(self, datas):
        predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]
        return predict_data
    

class YOLOv5:
    """YOLOv5 object detection model class for handling inference and visualization."""

    def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):
        """
        Initialization.

        Args:
            onnx_model (str): Path to the ONNX model.
        """
        self.infer_tool = infer_tool
        if self.infer_tool == 'openvino':
            # 构建openvino推理引擎
            self.openvino = OpenvinoInference(onnx_model)
            self.ndtype = np.single
        else:
            # 构建onnxruntime推理引擎
            self.ort_session = ort.InferenceSession(onnx_model,
                                                providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                                if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])

            # Numpy dtype: support both FP32 and FP16 onnx model
            self.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.single
       
        self.classes = CLASSES  # 加载模型类别
        self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板

    def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):
        """
        The whole pipeline: pre-process -> inference -> post-process.

        Args:
            im0 (Numpy.ndarray): original input image.
            conf_threshold (float): confidence threshold for filtering predictions.
            iou_threshold (float): iou threshold for NMS.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # 前处理Pre-process
        t1 = time.time()
        im, ratio, (pad_w, pad_h) = self.preprocess(im0)
        print('预处理时间:{:.3f}s'.format(time.time() - t1))
        
        # 推理 inference
        t2 = time.time()
        if self.infer_tool == 'openvino':
            preds = self.openvino.predict(im)
        else:
            preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]
        print('推理时间:{:.3f}s'.format(time.time() - t2))
     
        # 后处理Post-process
        t3 = time.time()
        boxes = self.postprocess(preds,
                                im0=im0,
                                ratio=ratio,
                                pad_w=pad_w,
                                pad_h=pad_h,
                                conf_threshold=conf_threshold,
                                iou_threshold=iou_threshold,
                                )
        print('后处理时间:{:.3f}s'.format(time.time() - t3))

        return boxes
        
    # 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHW
    def preprocess(self, img):
        """
        Pre-processes the input image.

        Args:
            img (Numpy.ndarray): image about to be processed.

        Returns:
            img_process (Numpy.ndarray): image preprocessed for inference.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
        """
        # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
        shape = img.shape[:2]  # original image shape
        new_shape = (self.model_height, self.model_width)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        ratio = r, r
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding
        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
        left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充

        # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
        img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0
        img_process = img[None] if len(img.shape) == 3 else img
        return img_process, ratio, (pad_w, pad_h)
    
    # 后处理,包括:阈值过滤与NMS
    def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):
        """
        Post-process the prediction.

        Args:
            preds (Numpy.ndarray): predictions come from ort.session.run().
            im0 (Numpy.ndarray): [h, w, c] original input image.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
            conf_threshold (float): conf threshold.
            iou_threshold (float): iou threshold.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度score
        x = preds  # outputs: predictions (1, 8400*3, 85)
    
        # Predictions filtering by conf-threshold
        x = x[x[..., 4] > conf_threshold]
       
        # Create a new matrix which merge these(box, score, cls) into one
        # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
        x = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]

        # NMS filtering
        # 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
    
        # 重新缩放边界框,为画图做准备
        if len(x) > 0:
            # Bounding boxes format change: cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
            x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
            x[..., :4] /= min(ratio)

            # Bounding boxes boundary clamp
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])

            return x[..., :6]  # boxes
        else:
            return []

    # 绘框
    def draw_and_visualize(self, im, bboxes, video_writer, vis=False, save=False, is_track=False):
        """
        Draw and visualize results.

        Args:
            im (np.ndarray): original image, shape [h, w, c].
            bboxes (numpy.ndarray): [n, 6], n is number of bboxes.
            vis (bool): imshow using OpenCV.
            save (bool): save image annotated.

        Returns:
            None
        """
        # Draw rectangles 
        if not is_track:
            for (*box, conf, cls_) in bboxes:
                # draw bbox rectangle
                cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                            self.color_palette[int(cls_)], 1, cv2.LINE_AA)
                cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)
        else:
            for (*box, conf, id_) in bboxes:
                # draw bbox rectangle
                cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                            (0, 0, 255), 1, cv2.LINE_AA)
                cv2.putText(im, f'{id_}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
    
        # Show image
        if vis:
            cv2.imshow('demo', im)
            cv2.waitKey(1)

        # Save video
        if save:
            video_writer.write(im)
            


class ByteTrackerONNX(object):
    def __init__(self, args):
        self.args = args
        self.tracker = BYTETracker(args, frame_rate=30)

    def _tracker_update(self, dets, image):
        online_targets = []
        if dets is not None:
            online_targets = self.tracker.update(
                dets[:, :5],
                [image.shape[0], image.shape[1]],
                [image.shape[0], image.shape[1]],
            )

        online_tlwhs = []
        online_ids = []
        online_scores = []
        for online_target in online_targets:
            tlwh = online_target.tlwh
            track_id = online_target.track_id
            vertical = tlwh[2] / tlwh[3] > 1.6
            if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
                online_tlwhs.append(tlwh)
                online_ids.append(track_id)
                online_scores.append(online_target.score)

        return online_tlwhs, online_ids, online_scores
    
    
    def inference(self, image, dets):
        """
        Args: dets: 检测结果, [x1, y1, x2, y2, conf, cls]
        Returns: np.array([[x1, y1, x2, y2, conf, ids], ...])
        """
        bboxes, ids, scores = self._tracker_update(dets, image)
        if len(bboxes) == 0:
            return []
        # Bounding boxes format change: tlwh -> xyxy
        bboxes = np.array(bboxes)
        bboxes[..., [2, 3]] += bboxes[..., [0, 1]]
        bboxes = np.c_[bboxes, np.array(scores), np.array(ids)]
        return bboxes


if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='yolov5s.onnx', help='Path to ONNX model')
    parser.add_argument('--source', type=str, default=str('test.mp4'), help='Path to input image')
    parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')
    parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')
    parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')

    parser.add_argument('--is_track', type=bool, default=True, help='是否启用跟踪')
    parser.add_argument('--track_thresh', type=float, default=0.5, help='tracking confidence threshold')
    parser.add_argument('--track_buffer', type=int, default=30, help='the frames for keep lost tracks, usually as same with FPS')
    parser.add_argument('--match_thresh', type=float, default=0.8, help='matching threshold for tracking')
    parser.add_argument('--min_box_area', type=float, default=10, help='filter out tiny boxes',)
    parser.add_argument('--mot20', dest='mot20', default=False, action='store_true', help='test mot20.',)
    args = parser.parse_args()

    # Build model
    model = YOLOv5(args.model, args.imgsz, args.infer_tool)

    bytetrack = ByteTrackerONNX(args)

    # 读取视频,解析帧数宽高,保存视频
    cap = cv2.VideoCapture(args.source)
    width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
    height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)
    video_writer = cv2.VideoWriter('demo.mp4', cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height)))
    frame_id = 1

    while True:
        start_time = time.time()
        ret, img = cap.read()
        if not ret:
            break

        # Inference
        boxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)
        
        # track
        if args.is_track:
            boxes = bytetrack.inference(img, boxes)
        
        # Visualize
        if len(boxes) > 0:
            model.draw_and_visualize(copy.deepcopy(img), boxes, video_writer, vis=False, save=True, is_track=args.is_track)
        
        end_time = time.time() - start_time
        print('frame {}/{} (Total time: {:.2f} ms)'.format(frame_id, int(frame_count), end_time * 1000))
        frame_id += 1

结果显示如下:

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.04~0.05s(Openvino)
推理时间:0.08~0.09s(ONNXRuntime)
后处理时间:0.001s
ByteTrack时间:0.001~0.002s
注:640×640下。

lap+cython-bbox安装

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/448985.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL知识体系】第1章 初识 MySQL

文章目录 第1章 初识 MySQL1.1 MySQL 介绍1.1.1 什么是 MySQL?1.1.2 MySQL 的特点?1.1.3 MySQL 默认端口? 1.2 安装 MySQL1.2.1在MacOS上安装MySQL1.2.2 在Windows上安装MySQL 1.3 如何选择 MySQL 客户端1.3.1 在MacOS上安装Workbench1.3.2 在…

【喜报!】科大睿智为企业成功通过CMMI5级评估!

山东智云信息科技有限公司成立于2011年,总部地处泉城济南,一直专注于生态环境信息化领域解决方案的咨询设计、产品研发、项目实施和系统集成类服务,致力于成为固定污染源监管与非现场精准执法领域的领军企业。 山东智云拥有100余名生态环境信…

论文:CLIP(Contrastive Language-Image Pretraining)

Learning Transferable Visual Models From Natural Language Supervision 训练阶段 模型架构分为两部分,图像编码器和文本编码器,图像编码器可以是比如 resnet50,然后文本编码器可以是 transformer。 训练数据是网络社交媒体上搜集的图像…

2024上半年软考中级《电子商务设计师》报名考试全攻略

​2024年软考电子商务设计师考试报名时间节点: 报名时间:上半年3月18日到4月15日,下半年8月19日到9月15日(各地区报名时间不同,具体日期见官方通告) 准考证打印时间:上半年5月20日起&#xff…

二维数组的传递和返回

指针和二维数组 指针存储的是内存单元的地址,当使用引用运算符 *,或者变址运算符 [ ] 时才能将指针所指向的内存单元中的值取出。 指针有两个关键属性: 1.它存储的是内存地址 2.它存储的是什么类型变量的内存地址,这一点非常…

【Ubuntu】原生Ubuntu-dock 栏 安装与卸载

1.查看是否安装 Ubuntu-dock(新版本的Ubuntu自带Ubuntu-dock version> 18.04) gnome-extensions list 2.安装Ubuntu-dock sudo apt install gnome-shell-extension-ubuntu-dock 3.重启,一定要重启!!!…

蓝桥杯真题讲解:填充(贪心)

蓝桥杯真题讲解&#xff1a;填充&#xff08;贪心&#xff09; 一、视频讲解二、正解代码 一、视频讲解 蓝桥杯真题讲解&#xff1a;填充&#xff08;贪心&#xff09; 二、正解代码 //填充&#xff1a;贪心 #include<bits/stdc.h> #define endl \n #define deb(x) c…

Spring Boot Configuration Processor使用

一、功能介绍 spring-boot-configuration-processor的作用就是将自己的配置你自己创建的配置类生成元数据信息&#xff0c;这样就能在你自己的配置文件中显示出来非常的方便。在META-INF目录下生成spring-configuration-metadata.json文件&#xff0c;从而告诉spring这个jar包…

2024年春招程序员个人简历范本(精选5篇|附模板)

HR浏览一份简历也就25秒左右,如果你连「好简历」都没有,怎么能找到好工作呢? 如果你不懂得如何在简历上展示自己,或者觉得怎么改简历都不出彩,那请你一定仔细读完。 Java开发工程师简历范本> 性别 男 年龄 24 学历 本科 张三 专业 计算机科学与技术 毕业院校 …

10 个高质量 AI 助手工具站点,你值得拥有的哦

以下 10 个 AI 助手工具站点&#xff0c;博主已全部验证&#xff0c;小伙伴们可放心使用的哈 说明&#xff1a; 博主倾向使用 1、2、3 这三款&#xff0c;尤其是 1 小程序真的很方便&#xff0c;手机就能操作&#xff0c;你懂的 文章目录 0. sora1. 微信小程序&#xff1a;AI 写…

聚道云软件连接器3月新增应用/产品更新合集

3月更新概要 新增应用&#xff1a; 应用1&#xff1a;华为云welink 应用2&#xff1a;易宝支付 应用3&#xff1a;励销云CRM 应用4&#xff1a;分贝通 应用5&#xff1a;灵当CRM 新增&更新功能 1、【流程】中增加流程树状管理 新增应用 应用1&#xff1a;华为云wel…

【C语言】【时间复杂度】Leetcode 153. 寻找旋转排序数组中的最小值

文章目录 题目时间复杂度概念时间复杂度的计算 解题思路代码呈现 题目 链接: link 时间复杂度 概念 时间复杂度是一种函数&#xff0c;定量地描述了该算法运行的时间。既然是一种函数&#xff0c;就涉及到自变量与因变量。因变量代表是时间复杂的规模&#xff0c;自变量是…

【Python】科研代码学习:二 dataclass,pipeline

【Python】科研代码学习&#xff1a;二 dataclass&#xff0c;pipeline 前言dataclasspipeline 前言 后文需要学习一下 transformers 库&#xff0c;必要时会介绍其他相关的重要库和方法。主要是从源代码、别人的技术文档学习&#xff0c;会更快些。 dataclass Python中的数…

AHU 汇编 实验五

实验名称&#xff1a;实验五 分支与循环程序设计 二、实验内容&#xff1a;从键盘输入一个四位的16进制数&#xff08;其中字母为大写&#xff09;&#xff0c;将其转化为二进制数提示输出。 实验过程&#xff1a; 源代码: data segmentbuff1 db Please input a number(H):$b…

CSS 02

1.复合选择器 &#xff08;1.1&#xff09;后代选择器 代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0&q…

C++实现引用计数(二)

实现引用计数 引言实现集成开发环境项目结构实现代码运行结果 注意 引言 C中经常使用智能指针来管理内存。对于共享指针shared_ptr的原理&#xff1a;每当有一个指针指向这块内存&#xff0c;引用计数的值加一&#xff0c;每当一个指针不再指向这块内存&#xff0c;引用计数的…

CircuitBreaker断路器(服务熔断,服务降级)

分布式系统面临的问题: 复杂分布式体系结构中的应用程序有数十个依赖关系&#xff0c;每个依赖关系在某些时候将不可避免地失败。 1.服务雪崩 多个微服务之间调用的时候&#xff0c;假设微服务A调用微服务B和微服务C&#xff0c;微服务B和微服务C又调用其它的微服务&#xff…

【代码随想录】【二叉树】day18:二叉树的左下角的值,路径总和、构造二叉树

1二叉树左下角的值 左下角的值&#xff1a;最后一层最左侧的节点的值 递归 from collections import deque class TreeNode:def __init__(self,val,leftNone,rightNone):self.val valself.left leftself.right rightclass solution:def leftBottomNode(self,root):self.m…

计算机网络-第4章 网络层(1)

主要内容&#xff1a;网络层提供的两种服务&#xff1a;虚电路和数据报&#xff08;前者不用&#xff09;、ip协议、网际控制报文协议ICMP、路由选择协议&#xff08;内部网关和外部网关&#xff09;、IPv6,IP多播&#xff0c;虚拟专用网、网络地址转换NAT&#xff0c;多协议标…

C++作业day1

2> 试编程 提示并输入一个字符串&#xff0c;统计该字符中大写、小写字母个数、数字个数、空格个数以及其他字符个数 要求使用C风格字符串完成 #include <iostream> #include <string.h>using namespace std;int main() {string str;cout << "请输…