【深度学习笔记】优化算法——学习率调度器

学习率调度器

🏷sec_scheduler

到目前为止,我们主要关注如何更新权重向量的优化算法,而不是它们的更新速率。
然而,调整学习率通常与实际算法同样重要,有如下几方面需要考虑:

  • 首先,学习率的大小很重要。如果它太大,优化就会发散;如果它太小,训练就会需要过长时间,或者我们最终只能得到次优的结果。我们之前看到问题的条件数很重要(有关详细信息,请参见 :numref:sec_momentum)。直观地说,这是最不敏感与最敏感方向的变化量的比率。
  • 其次,衰减速率同样很重要。如果学习率持续过高,我们可能最终会在最小值附近弹跳,从而无法达到最优解。 :numref:sec_minibatch_sgd比较详细地讨论了这一点,在 :numref:sec_sgd中我们则分析了性能保证。简而言之,我们希望速率衰减,但要比 O ( t − 1 2 ) \mathcal{O}(t^{-\frac{1}{2}}) O(t21)慢,这样能成为解决凸问题的不错选择。
  • 另一个同样重要的方面是初始化。这既涉及参数最初的设置方式(详情请参阅 :numref:sec_numerical_stability),又关系到它们最初的演变方式。这被戏称为预热(warmup),即我们最初开始向着解决方案迈进的速度有多快。一开始的大步可能没有好处,特别是因为最初的参数集是随机的。最初的更新方向可能也是毫无意义的。
  • 最后,还有许多优化变体可以执行周期性学习率调整。这超出了本章的范围,我们建议读者阅读 :cite:Izmailov.Podoprikhin.Garipov.ea.2018来了解个中细节。例如,如何通过对整个路径参数求平均值来获得更好的解。

鉴于管理学习率需要很多细节,因此大多数深度学习框架都有自动应对这个问题的工具。
在本章中,我们将梳理不同的调度策略对准确性的影响,并展示如何通过学习率调度器(learning rate scheduler)来有效管理。

一个简单的问题

我们从一个简单的问题开始,这个问题可以轻松计算,但足以说明要义。
为此,我们选择了一个稍微现代化的LeNet版本(激活函数使用relu而不是sigmoid,汇聚层使用最大汇聚层而不是平均汇聚层),并应用于Fashion-MNIST数据集。
此外,我们混合网络以提高性能。
由于大多数代码都是标准的,我们只介绍基础知识,而不做进一步的详细讨论。如果需要,请参阅 :numref:chap_cnn进行复习。

%matplotlib inline
import math
import torch
from torch import nn
from torch.optim import lr_scheduler
from d2l import torch as d2l


def net_fn():
    model = nn.Sequential(
        nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),
        nn.MaxPool2d(kernel_size=2, stride=2),
        nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),
        nn.MaxPool2d(kernel_size=2, stride=2),
        nn.Flatten(),
        nn.Linear(16 * 5 * 5, 120), nn.ReLU(),
        nn.Linear(120, 84), nn.ReLU(),
        nn.Linear(84, 10))

    return model

loss = nn.CrossEntropyLoss()
device = d2l.try_gpu()

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

# 代码几乎与d2l.train_ch6定义在卷积神经网络一章LeNet一节中的相同
def train(net, train_iter, test_iter, num_epochs, loss, trainer, device,
          scheduler=None):
    net.to(device)
    animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])

    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)  # train_loss,train_acc,num_examples
        for i, (X, y) in enumerate(train_iter):
            net.train()
            trainer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            trainer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            train_loss = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % 50 == 0:
                animator.add(epoch + i / len(train_iter),
                             (train_loss, train_acc, None))

        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch+1, (None, None, test_acc))

        if scheduler:
            if scheduler.__module__ == lr_scheduler.__name__:
                # UsingPyTorchIn-Builtscheduler
                scheduler.step()
            else:
                # Usingcustomdefinedscheduler
                for param_group in trainer.param_groups:
                    param_group['lr'] = scheduler(epoch)

    print(f'train loss {train_loss:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')

让我们来看看如果使用默认设置,调用此算法会发生什么。
例如设学习率为 0.3 0.3 0.3并训练 30 30 30次迭代。
留意在超过了某点、测试准确度方面的进展停滞时,训练准确度将如何继续提高。
两条曲线之间的间隙表示过拟合。

lr, num_epochs = 0.3, 30
net = net_fn()
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train(net, train_iter, test_iter, num_epochs, loss, trainer, device)
train loss 0.128, train acc 0.951, test acc 0.885

在这里插入图片描述

学习率调度器

我们可以在每个迭代轮数(甚至在每个小批量)之后向下调整学习率。
例如,以动态的方式来响应优化的进展情况。

lr = 0.1
trainer.param_groups[0]["lr"] = lr
print(f'learning rate is now {trainer.param_groups[0]["lr"]:.2f}')
learning rate is now 0.10

更通常而言,我们应该定义一个调度器。
当调用更新次数时,它将返回学习率的适当值。
让我们定义一个简单的方法,将学习率设置为 η = η 0 ( t + 1 ) − 1 2 \eta = \eta_0 (t + 1)^{-\frac{1}{2}} η=η0(t+1)21

class SquareRootScheduler:
    def __init__(self, lr=0.1):
        self.lr = lr

    def __call__(self, num_update):
        return self.lr * pow(num_update + 1.0, -0.5)

让我们在一系列值上绘制它的行为。

scheduler = SquareRootScheduler(lr=0.1)
d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])


在这里插入图片描述

现在让我们来看看这对在Fashion-MNIST数据集上的训练有何影响。
我们只是提供调度器作为训练算法的额外参数。

net = net_fn()
trainer = torch.optim.SGD(net.parameters(), lr)
train(net, train_iter, test_iter, num_epochs, loss, trainer, device,
      scheduler)
train loss 0.270, train acc 0.901, test acc 0.876

在这里插入图片描述

这比以前好一些:曲线比以前更加平滑,并且过拟合更小了。
遗憾的是,关于为什么在理论上某些策略会导致较轻的过拟合,有一些观点认为,较小的步长将导致参数更接近零,因此更简单。
但是,这并不能完全解释这种现象,因为我们并没有真正地提前停止,而只是轻柔地降低了学习率。

策略

虽然我们不可能涵盖所有类型的学习率调度器,但我们会尝试在下面简要概述常用的策略:多项式衰减和分段常数表。
此外,余弦学习率调度在实践中的一些问题上运行效果很好。
在某些问题上,最好在使用较高的学习率之前预热优化器。

单因子调度器

多项式衰减的一种替代方案是乘法衰减,即 η t + 1 ← η t ⋅ α \eta_{t+1} \leftarrow \eta_t \cdot \alpha ηt+1ηtα其中 α ∈ ( 0 , 1 ) \alpha \in (0, 1) α(0,1)
为了防止学习率衰减到一个合理的下界之下,
更新方程经常修改为 η t + 1 ← m a x ( η m i n , η t ⋅ α ) \eta_{t+1} \leftarrow \mathop{\mathrm{max}}(\eta_{\mathrm{min}}, \eta_t \cdot \alpha) ηt+1max(ηmin,ηtα)

class FactorScheduler:
    def __init__(self, factor=1, stop_factor_lr=1e-7, base_lr=0.1):
        self.factor = factor
        self.stop_factor_lr = stop_factor_lr
        self.base_lr = base_lr

    def __call__(self, num_update):
        self.base_lr = max(self.stop_factor_lr, self.base_lr * self.factor)
        return self.base_lr

scheduler = FactorScheduler(factor=0.9, stop_factor_lr=1e-2, base_lr=2.0)
d2l.plot(torch.arange(50), [scheduler(t) for t in range(50)])


在这里插入图片描述

接下来,我们将使用内置的调度器,但在这里仅解释它们的功能。

多因子调度器

训练深度网络的常见策略之一是保持学习率为一组分段的常量,并且不时地按给定的参数对学习率做乘法衰减。
具体地说,给定一组降低学习率的时间点,例如 s = { 5 , 10 , 20 } s = \{5, 10, 20\} s={5,10,20}
每当 t ∈ s t \in s ts时,降低 η t + 1 ← η t ⋅ α \eta_{t+1} \leftarrow \eta_t \cdot \alpha ηt+1ηtα
假设每步中的值减半,我们可以按如下方式实现这一点。

net = net_fn()
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
scheduler = lr_scheduler.MultiStepLR(trainer, milestones=[15, 30], gamma=0.5)

def get_lr(trainer, scheduler):
    lr = scheduler.get_last_lr()[0]
    trainer.step()
    scheduler.step()
    return lr

d2l.plot(torch.arange(num_epochs), [get_lr(trainer, scheduler)
                                  for t in range(num_epochs)])


在这里插入图片描述

这种分段恒定学习率调度背后的直觉是,让优化持续进行,直到权重向量的分布达到一个驻点。
此时,我们才将学习率降低,以获得更高质量的代理来达到一个良好的局部最小值。
下面的例子展示了如何使用这种方法产生更好的解决方案。

train(net, train_iter, test_iter, num_epochs, loss, trainer, device,
      scheduler)
train loss 0.191, train acc 0.928, test acc 0.889

在这里插入图片描述

余弦调度器

余弦调度器是 :cite:Loshchilov.Hutter.2016提出的一种启发式算法。
它所依据的观点是:我们可能不想在一开始就太大地降低学习率,而且可能希望最终能用非常小的学习率来“改进”解决方案。
这产生了一个类似于余弦的调度,函数形式如下所示,学习率的值在 t ∈ [ 0 , T ] t \in [0, T] t[0,T]之间。

η t = η T + η 0 − η T 2 ( 1 + cos ⁡ ( π t / T ) ) \eta_t = \eta_T + \frac{\eta_0 - \eta_T}{2} \left(1 + \cos(\pi t/T)\right) ηt=ηT+2η0ηT(1+cos(πt/T))

这里 η 0 \eta_0 η0是初始学习率, η T \eta_T ηT是当 T T T时的目标学习率。
此外,对于 t > T t > T t>T,我们只需将值固定到 η T \eta_T ηT而不再增加它。
在下面的示例中,我们设置了最大更新步数 T = 20 T = 20 T=20

class CosineScheduler:
    def __init__(self, max_update, base_lr=0.01, final_lr=0,
               warmup_steps=0, warmup_begin_lr=0):
        self.base_lr_orig = base_lr
        self.max_update = max_update
        self.final_lr = final_lr
        self.warmup_steps = warmup_steps
        self.warmup_begin_lr = warmup_begin_lr
        self.max_steps = self.max_update - self.warmup_steps

    def get_warmup_lr(self, epoch):
        increase = (self.base_lr_orig - self.warmup_begin_lr) \
                       * float(epoch) / float(self.warmup_steps)
        return self.warmup_begin_lr + increase

    def __call__(self, epoch):
        if epoch < self.warmup_steps:
            return self.get_warmup_lr(epoch)
        if epoch <= self.max_update:
            self.base_lr = self.final_lr + (
                self.base_lr_orig - self.final_lr) * (1 + math.cos(
                math.pi * (epoch - self.warmup_steps) / self.max_steps)) / 2
        return self.base_lr

scheduler = CosineScheduler(max_update=20, base_lr=0.3, final_lr=0.01)
d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])


在这里插入图片描述

在计算机视觉的背景下,这个调度方式可能产生改进的结果。
但请注意,如下所示,这种改进并不一定成立。

net = net_fn()
trainer = torch.optim.SGD(net.parameters(), lr=0.3)
train(net, train_iter, test_iter, num_epochs, loss, trainer, device,
      scheduler)
train loss 0.207, train acc 0.923, test acc 0.892

在这里插入图片描述

预热

在某些情况下,初始化参数不足以得到良好的解。
这对某些高级网络设计来说尤其棘手,可能导致不稳定的优化结果。
对此,一方面,我们可以选择一个足够小的学习率,
从而防止一开始发散,然而这样进展太缓慢。
另一方面,较高的学习率最初就会导致发散。

解决这种困境的一个相当简单的解决方法是使用预热期,在此期间学习率将增加至初始最大值,然后冷却直到优化过程结束。
为了简单起见,通常使用线性递增。
这引出了如下表所示的时间表。

scheduler = CosineScheduler(20, warmup_steps=5, base_lr=0.3, final_lr=0.01)
d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])


在这里插入图片描述

注意,观察前5个迭代轮数的性能,网络最初收敛得更好。

net = net_fn()
trainer = torch.optim.SGD(net.parameters(), lr=0.3)
train(net, train_iter, test_iter, num_epochs, loss, trainer, device,
      scheduler)
train loss 0.261, train acc 0.904, test acc 0.878

在这里插入图片描述

预热可以应用于任何调度器,而不仅仅是余弦。
有关学习率调度的更多实验和更详细讨论,请参阅 :cite:Gotmare.Keskar.Xiong.ea.2018
其中,这篇论文的点睛之笔的发现:预热阶段限制了非常深的网络中参数的发散程度 。
这在直觉上是有道理的:在网络中那些一开始花费最多时间取得进展的部分,随机初始化会产生巨大的发散。

小结

  • 在训练期间逐步降低学习率可以提高准确性,并且减少模型的过拟合。
  • 在实验中,每当进展趋于稳定时就降低学习率,这是很有效的。从本质上说,这可以确保我们有效地收敛到一个适当的解,也只有这样才能通过降低学习率来减小参数的固有方差。
  • 余弦调度器在某些计算机视觉问题中很受欢迎。
  • 优化之前的预热期可以防止发散。
  • 优化在深度学习中有多种用途。对于同样的训练误差而言,选择不同的优化算法和学习率调度,除了最大限度地减少训练时间,可以导致测试集上不同的泛化和过拟合量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/448009.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVA全面基础知识(第七部分)

大家好我是程序员阿存&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款&#xff0c;项目源码以及部署相关请联系存哥&#xff0c;文末附上联系信息 。 这篇文章给大家分享的是JAVA的基础知识&#xff0c; &#x1f495;&#x1f495;作者&#xff1a;程序员阿存 &…

【spark operator】spark operator动态分配executor

背景&#xff1a; 之前在使用spark operator的时候必须指定executor的个数&#xff0c;在将任务发布到spark operator后&#xff0c;k8s会根据指定的个数启动executor&#xff0c;但是对于某些spark sql可能并不需要用到那么多executor&#xff0c;在此时executor的数量就不好…

py脚本模拟json数据,StructuredStreaming接收数据存储HDFS一些小细节 ERROR:‘path‘ is not specified

很多初次接触到StructuredStreaming 应该会写一个这样的案例 - py脚本不断产生数据写入linux本地&#xff0c; 通过hdfs dfs 建目录文件来实时存储到HDFS中 1. 指定数据schema&#xff1a; 实时json数据 2. 数据源地址&#xff1a;HDFS 3. 结果落地位置&#xff1a; HDFS …

淘宝电商产品价格官方防爬取采集设计机制,如何破?|淘宝电商API数据采集看完你也会!

在当今数字化时代&#xff0c;电商平台如淘宝已经成为人们购物的主要渠道之一。然而&#xff0c;随着电子商务的蓬勃发展&#xff0c;涌现出大量的第三方工具和应用&#xff0c;试图通过采集淘宝电商产品价格等信息来进行数据分析和竞争优势的获取。为了维护市场秩序和保护商家…

java中几种对象存储(文件存储)中间件的介绍

一、前言 在博主得到系统中使用的对象存储主要有OSS&#xff08;阿里云的对象存储&#xff09; COS&#xff08;腾讯云的对象存储&#xff09;OBS&#xff08;华为云的对象存储&#xff09;还有就是MinIO 这些玩意。其实这种东西大差不差&#xff0c;几乎实现方式都是一样&…

马斯克希望OpenAI与特斯拉合并或“完全控制”?

推荐阅读&#xff1a; AI大战升温&#xff1a;Claude 3号宣称具有“近乎人类”的能力-CSDN博客 【新手向】ChatGPT入门指南 - 订阅GPT4之前必须了解的十件事情-CSDN博客 Claude3“闪击”GPT&#xff0c;OpenAI半天就更新了这&#xff1f;-CSDN博客 【亲测】注册Claude3教程…

BLDC 驱动架构介绍

BLDC无刷电机&#xff0c;顾名思义就是没有电刷的电机&#xff0c;因为没有电刷&#xff0c;无刷电机在运行过程中噪音小&#xff0c;也不存在电刷损坏的情况。 BLDC 由于其高效率、长寿命、低噪音、易于维护等特点&#xff0c;正在逐渐替代有刷电机&#xff0c;今天就给大家介…

MessAuto-让验证码提取更加丝滑

专注于web漏洞挖掘、内网渗透、免杀和代码审计&#xff0c;感谢各位师傅的关注&#xff01;网安之路漫长&#xff0c;与君共勉&#xff01; MessAuto MessAuto 是一款 macOS 平台自动提取短信和邮箱验证码到粘贴板的软件&#xff0c;由Rust开发&#xff0c;适用于任何APP 下面展…

【竞技宝】LOL:knight阿狸伤害爆炸 BLG2-0轻取RA

北京时间2024年3月11日,英雄联盟LPL2024春季常规赛继续进行,昨日共进行三场比赛,首场比赛由BLG对阵RA。本场比赛BLG选手个人实力碾压RA2-0轻松击败对手。以下是本场比赛的详细战报。 第一局: BLG:剑魔、千珏、妮蔻、卡牌、洛 RA:乌迪尔、蔚、阿卡丽、斯莫德、芮尔 首局比赛,B…

智能测径仪在胶管行业的应用

关键字&#xff1a;胶管外径尺寸测量&#xff0c;胶管检测仪器&#xff0c;胶管外径检测&#xff0c;高温胶管外径检测&#xff0c;软硬胶管检测&#xff0c; 智能测径仪在家胶管行业中的应用主要体现在对胶管外径的精确测量和控制上。在胶管生产过程中&#xff0c;外径的大小直…

高级语言讲义2023软专(仅高级语言部分)

1.辗转相除求最大公约数过程如下: U/V...余 V/...余 /...余 当为0时&#xff0c;即为U、V最大公约数&#xff0c;编写函数int g< d(intU,intV)求最大公约数。 #include <stdio.h>int gcd(int a,int b) {if(b0)return a;elsereturn gcd(b,a%b); }int gcd2(int a,i…

python推导式

python推导式是一种简洁且强大的内建语法结构&#xff0c;它允许我们以一种极其紧凑和易于理解的方式创建新的列表、字典、集合或生成器对象&#xff0c;能够更高效地操作和转换数据结构。 列表推导式基本语法如下图&#xff1a; 其他推导式的语法也基本相似&#xff0c;看着有…

最迟但到的 Star History 2023 年度开源精选!

千呼万唤始出来&#xff0c;Star History 2023 年终开源精选来啦&#xff01;&#x1f389; AI 是 2023 开源领域里最主要的关键词&#xff0c;但其实过去一年还是有很多其他值得关注的项目和发展趋势的&#xff01;Star History 小编总结了几个类别并精选了类别中最亮眼的项目…

ElasticSearchLinux安装和springboot整合的记录和遇到的问题

前面整合遇到的一些问题有的记录在下面了&#xff0c;有的当时忘了记录下来&#xff0c;希望下面的能帮到你们 1&#xff1a;Linux安装ES 下载安装&#xff1a; 参考文章&#xff1a;连接1 连接2 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch…

校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序

项目描述&#xff1a; 校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序 功能介绍&#xff1a; 表白墙 卖舍友 步数旅行 步数排行榜 情侣脸 漫画脸 个人主页 私信 站内消息 今日话题 评论点赞收藏 服务器环境要求&#xff1a;PHP7.0 MySQL5.7 效果…

【三十】springboot项目上高并发解决示例

互相交流入口地址 整体目录&#xff1a; 【一】springboot整合swagger 【二】springboot整合自定义swagger 【三】springboot整合token 【四】springboot整合mybatis-plus 【五】springboot整合mybatis-plus 【六】springboot整合redis 【七】springboot整合AOP实现日志操作 【…

c++ primer plus 笔记 第十六章 string类和标准模板库

string类 string自动调整大小的功能&#xff1a; string字符串是怎么占用内存空间的&#xff1f; 前景&#xff1a; 如果只给string字符串分配string字符串大小的空间&#xff0c;当一个string字符串附加到另一个string字符串上&#xff0c;这个string字符串是以占用…

并发容器介绍(二)

并发容器介绍&#xff08;二&#xff09; 文章目录 并发容器介绍&#xff08;二&#xff09;BlockingQueueBlockingQueue 简介ArrayBlockingQueueLinkedBlockingQueuePriorityBlockingQueue ConcurrentSkipListMap 文章来自Java Guide 用于学习如有侵权&#xff0c;立即删除 Bl…

大模型字典中加入特殊字符

大模型字典中加入特殊字符 在微调大模型的时候会遇到添加特殊字符&#xff0c;例如在微调多轮的数据的时候需要加入人和机器等特殊标识字符&#xff0c;如用这个特殊字符表示人&#xff0c;用这个特殊字符表示机器&#xff0c;从而实现了人机对话。一般在大模型中base字典中不…

二次供水无人值守解决方案

二次供水无人值守解决方案 二次供水系统存在一定的管理难题和技术瓶颈&#xff0c;如设备老化、维护不及时导致的水质安全隐患&#xff0c;以及如何实现高效运行和智能化管理等问题。在一些地区&#xff0c;特别是老旧小区或农村地区&#xff0c;二次供水设施建设和改造滞后&a…