【MATLAB第98期】基于MATLAB的MonteCarlo蒙特卡罗结合kriging克里金代理模型的全局敏感性分析模型(有目标函数)

【MATLAB第98期】基于MATLAB的Monte Carlo蒙特卡罗结合kriging克里金代理模型的全局敏感性分析模型(有目标函数)【更新中】


PS:因内容涉及较多,所以一时半会更新不完
后期会将相关原理,以及多种功能详细介绍。
麻烦点赞收藏,及时获取更新消息。

引言

在前面几期,介绍了局部敏感性分析法和sobol全局敏感性分析模型,本期介绍基于MATLAB的MonteCarlo蒙特卡罗结合kriging克里金代理模型全局敏感性分析方法。

往期文章:

【MATLAB第31期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理回归问题MATLAB代码实现(持续更新)
【MATLAB第32期】【更新中】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现
【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测
【MATLAB第64期】【保姆级教程】基于MATLAB的SOBOL全局敏感性分析模型运用(含无目标函数,考虑代理模型)

一、Kriging克里金模型

克里金模型讲解参考博主:
steelDK
傻傻虎虎

克里金(Kriging)模型是一种基于空间相关性的插值方法,通过建立半变异函数来描述空间相关性,并利用已知观测点的数值和空间位置来预测未知点的数值。常用于地质、地理和环境科学等领域。
克里金模型的基本原理是通过建立半变异函数来描述空间相关性。半变异函数可以测量两个点之间的相似性程度,它表示两个点之间的数值差异随距离增加而变化的速率。常见的半变异函数包括指数模型、高斯模型和球模型等。克里金模型在应用时有如下假设条件:
(1)、克里金法假设所有数据之间都服从n维的正态分布。
(2)、无偏。
————————————————

克里金模型优点:
1.精度高
Kriging模型通过对已有数据的空间相关性进行建模,能够较准确地估计未观测点的数值,尤其适用于连续变量的插值。
2.不受外部影响
Kriging模型不仅仅依赖于周围点的数值,还考虑了点之间的空间相关性。因此,它对异常值和局部波动有较好的免疫性,能够提供相对稳定的估计结果。
3.提供不确定性估计
Kriging模型不仅能够给出点估计值,还能给出估计的不确定性。通过计算协方差函数,可以得到预测值的方差和置信区间,提供了对预测结果的可靠性评估。

克里金模型缺点:
1.数据需满足空间相关性
Kriging模型的建立基于变量的空间相关性,因此,如果数据的空间相关性很弱或不存在,模型可能不适用。此外,Kriging模型对于大数据量的计算需求较高。
2.对模型参数的选择敏感
Kriging模型的结果受到模型参数的影响,包括半方差函数的参数和拟合方法等。选择合适的参数值对于结果的准确性很重要,但也较为困难。
3.不适用于非线性插值
Kriging模型是一种线性插值方法,对于非线性、非正态的数据拟合效果较差。在这种情况下,可能需要使用其他插值方法。
4.计算复杂度较高
Kriging模型在进行预测时需要计算协方差矩阵的逆矩阵,这一过程的计算复杂度较高,尤其是当数据量较大时会增加计算的困难度。

二、蒙特卡洛模拟

(1)评价指标

评价指标包括:一阶影响指数S,总效应指数ST,与sobol评价方法一致。

*一阶影响指数S:*显示由各个输入变量的方差产生的因变量的方差,根据一阶影响指数可以量化单个变量对模型的敏感程度

总效应指数ST:显示由每个输入变量的方差及其与其他输入变量的相互作用而产生的因变量的方差。

其中直方图按总效应指数ST排序。因变量对具有最高总效应指数ST的输入变量最敏感。

输入变量的总效应指数ST和一阶影响指数S之间的差异可以衡量该输入与其他输入变量之间相互作用的效果。

(2)参数

克里金参数:

%*regr:回归模型的函数句柄。
%*corr:相关函数的函数句柄。
%*theta:相关函数参数。
%*beta:广义最小二乘估计。
%*gamma:相关系数。
%*sigma2:过程方差的最大似然估计。
%*S:按比例设计的场地。
%*Ssc:设计参数的比例因子。
%*Ysc:设计坐标的比例因子。
%*C:相关矩阵的Cholesky因子。
%*Ft:不相关回归矩阵。
%*G:根据QR因子分解:Ft=Q*G'。

使用MCGSA函数蒙特卡罗进行全局灵敏度分析,即使用蒙特卡罗模拟计算个体效应和总效应(仿照Sobol方差计算)。其中,四个参数包括(func、str、bounds、npop):
输入参数:

  1. func是代理结构
  2. str是字符串标识代理项
  3. bounds是定义用于拟合代理项的输入空间的矩阵(第一行和第二行分别是下限和上限)
  4. npop是蒙特卡罗样本的数量(npop一般大于5000)

输出参数:

  1. output是指分析结果(结构变量):

其中,individual :个体效应矩阵结构(一阶影响指数S)
total:总效应矩阵结构(总效应指数ST)。

三、全局敏感性分析(有目标函数)

有目标函数情况下,可以直接结合MonteCarlo蒙特卡罗模拟进行全局敏感性分析,参考第64期sobol方法。本文仅介绍有目标函数情况下如何调用克里金模型。

VarMin=[0 0 0];%各个参数下限
VarMax=[10  10 10];%各个参数上限
bounds=[VarMin;VarMax]
 % 创建DoE
   dim       = 3;% 优化变量数量
   numpop = 20;%采样点个数,也就是参数水平数 ,取大了好,比如4000,但慢
    X = LHS(numpop, dim,bounds);% 拉丁超立方抽样

通过使用平移传播算法(TPA)生成拉丁超立方体设计。目标是在不使用形式优化的情况下获得最优(或接近最优)拉丁超立方体设计。该过程需要最少的计算工作量,并且结果实际上是实时提供的。该算法利用点位置模式,基于PHIp准则(最大距离准则的变体)进行最优拉丁超立方体设计。由一个或多个点组成的小构建块(称为SEED)用于通过在超空间中的简单平移来重新创建这些模式。在TPA的开发过程中进行的研究发现:
(i)随着维度的增加,PHIp的分布倾向于降低值;
(ii)通过TPA获得的拉丁超立方体设计代表了高达中等尺寸的最佳拉丁超立方体的有吸引力的替代方案。得出的结论是,对于多达六个维度(无论点密度如何),所提出的拉丁超立方体设计提供了最优拉丁超立方体的计算上廉价的估计。设计的每一行代表一个运行(或示例)。设计变量被规范化,使得超立方体点的值在0和1之间。
参考文献: Viana FAC, Venter G, and Balabanov V, “An algorithm for fast optimal Latin hypercube design of experiments,” International Journal for Numerical Methods in Engineering, Vol. 82 (2), pp. 135-156, 2010 (DOI:10.1002/nme.2750).

%X= sobolset(dim);%或者参考64期sobol抽样方法。 

% 目标函数响应
for i=1:numpop
Y(i,:) = myfun(X(i,:)); %
end

**A、设定目标函数(3个变量,即维度D=3)** 
Y=X1^2+2*X2+X3-1
```matlab
y=x(1)^2+2*x(2)+x(3)-1;

B、设定变量上下限

VarMin=[0 0 0];%各个参数下限
VarMax=[10  10 10];%各个参数上限

C、建立克里金模型

训练集输入输出建立:

X = lhsdesign(numpop, dim);% 拉丁超立方抽样
       
    %X= sobolset(dim);%或者参考64期sobol抽样方法。 
 % 目标函数响应
for i=1:numpop
 Y(i,:) = myfun(X(i,:)); %
end

模型拟合:

opt  = krigingtrain(X, Y);
 kopt = krigingfit(opt );

D、设定MC参数

npop = 200; %蒙特卡罗模拟的点数
sv=‘LHS’% 选择对应的抽样方法,比如LHS

E、生成样本矩阵
基本与64期sobol一致

% 创建A矩阵
Xa = rand(npop, dim);
Xa = SV(Xa, [zeros(1,dim); ones(1,dim)], bounds);

% 创建B矩阵
Xb = rand(npop, dim);
Xb = SV(Xb, [zeros(1,dim); ones(1,dim)], bounds);
通过将B的第i列替换为A的第i行,为每个输入变量生成C矩阵
% 创建C矩阵
C = zeros(npop,dim,dim);
for c1 = 1 : dim
    C(:,:,c1)  = Xb;
    C(:,c1,c1) = Xa(:,c1);
end

F、GSA分析

output = MCGSA(func, str, Xa, Xb)

一阶影响指数S值、总效应指数ST值计算公式:

在这里插入图片描述
var方差函数为matlab自带

绘图:

在这里插入图片描述

四、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“98期”以及相应指令,即可获取对应下载方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/447519.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Buildroot 之一 详解源码及架构

在之前的博文中,我们学习了直接通过 Makefile 手动来进行构建 U-Boot 和 Linux Kernel 等,其实,目前存在多种嵌入式 Linux 环境的构建工具,其中,Buildroot 就是被广泛应用的一种。今天就来详细学习一个 Buildroot 这个自动化构建工具。 Buildroot Buildroot 是一个运行于…

HCIP---IS-IS协议

文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 一.IS-IS协议概述 IS-IS是一种基于链路状态的内部网关协议(IGP),它使用最短路径优先算法(SPF或Dijkstra)进行路由计算。这种协议在自治…

如果让你实现实时消息推送你会用什么技术?轮询、websocket还是sse

在日常的开发中,我们经常能碰见服务端需要主动推送给客户端数据的业务场景,比如_数据大屏的实时数据_,比如_消息中心的未读消息_,比如_聊天功能_等等。 本文主要介绍SSE的使用场景和如何使用SSE。 学习就完事了 服务端向客户端推…

使用 Logstash 丰富你的 Elasticsearch 文档

作者:来自 Elastic David Pilato 我们在上一篇文章中看到,我们可以使用摄取管道中的 Elasticsearch Enrich Processor 在 Elasticsearch 中进行数据丰富。 但有时,你需要执行更复杂的任务,或者你的数据源不是 Elasticsearch&#…

掌握这3种方法,mp3格式转换就是这么简单!

掌握MP3格式转换并不需要复杂的技术或专业知识。在数字化时代,我们有许多简单而有效的方法可以实现这一目标。无论是为了节省存储空间,提高音频文件的兼容性,还是其他需求,本文将介绍三种简单的方法,让您轻松掌握mp3格…

编程界的圣经:从Scheme到JavaScript构建你的计算思维

文章目录 适读人群目 录 《计算机程序的构造和解释》(Structure and Interpretation of Computer Programs,简记为SICP)是MIT的基础课教材,出版后引起计算机教育界的广泛关注,对推动全世界大学计算机科学技术教育的发…

掌握潮流,使用渐变色彩图标icon,打造独特风格!

渐变色图标icon非常抢眼,从日常使用频率最高的手机到街上随处可见的海报,通常色彩搭配出众,让人感觉很惊艳。对色彩搭配的不同理解会影响我们设计产品的最终性能。本文将带您了解在UI设计圈兴起的时尚色彩组合——什么是渐变色,如…

Docker进阶:深入理解 Dockerfile

Docker进阶:深入理解 Dockerfile 一、Dockerfile 概述二、为什么要学习Dockerfile三、Dockerfile 编写规则四、Dockerfile 中常用的指令1、FROM2、LABEL3、RUN4、CMD5、ENTRYPOINT6、COPY7、ADD8、WORKDIR9、 ENV10、EXPOSE11、VOLUME12、USER13、注释14、ONBUILD 命…

【Python】成功解决ZeroDivisionError: division by zero

【Python】成功解决ZeroDivisionError: division by zero 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订…

ROS2从入门到精通0-2:ROS2简介、对比ROS1与详细安装流程

目录 0 专栏介绍1 什么是机器人操作系统?2 ROS的发展历程3 ROS2与ROS1的区别4 ROS2安装4.1 基本安装4.2 测试ROS24.2.1 测试一:发布者与订阅者4.2.2 测试二:海龟仿真器 5 常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌…

CMake 交叉编译

想知道“魔笛手”在这里能发挥什么作用吗?想象一下,把 CMake 当做法力高强的魔笛手,C 的项目则是故事中的那些被魔笛手拯救的孩子。 父母要抚养一个孩子并非易事,营养需要面面俱到,保证身体健康,关心事无巨…

【周总结周末日常】

周总结 完成任务开发并且与前端联调通过 完成已开发功能的冒烟测试 修复测试中出现的一些数据显示问题 2024/3/10 晴 温度适宜 这周天气比上周好多了,最起码见到好几次太阳 周六在世纪公园溜达一会儿,偶尔呼吸下大自然,挺棒的…

wpscan专门针对wordpress的安全扫描工具

说明 WPScan是一款专门针对WordPress的漏洞扫描工具,它使用Ruby编程语言编写。WPScan能够扫描WordPress网站中的多种安全漏洞,包括WordPress本身的漏洞、插件漏洞和主题漏洞。此外,WPScan还能扫描类似robots.txt这样的敏感文件,并…

Clion attach一个linux进程进行debug

背景 手头的一段程序&#xff0c;目前已经在linux上运行了&#xff0c;我在windows上有源代码&#xff0c;想在本地debug一下&#xff0c;看看代码里复杂的流程都是怎么样运行的。 代码样例 # fileName:calculateSum.cpp #include <iostream>int main() {int num1, nu…

C++程序设计-第四/五章 函数和类和对象【期末复习|考研复习】

前言 总结整理不易&#xff0c;希望大家点赞收藏。 给大家整理了一下C程序设计中的重点概念&#xff0c;以供大家期末复习和考研复习的时候使用。 C程序设计系列文章传送门&#xff1a; 第一章 面向对象基础 第四/五章 函数和类和对象 第六/七/八章 运算符重载/包含与继承/虚函…

FX110网:在CP Markets申请出金四个多月了,没任何消息!

近期&#xff0c;本站收到一中国汇友投诉&#xff0c;称其CP Markets平台已数月无法出金&#xff0c;平台方也没有任何回应。在货币市场闯荡久了的“老鸟”就会知道&#xff0c;平台无故不给出金必定有妖&#xff0c;更何况还是长达数月&#xff01; 在CP Markets申请出金四个多…

LINE社群:为您的跨境出海业务带来更多流量

LINE 社群就是一个大型的公开聊天室&#xff0c;通过LINE社群不需要将对方添加为好友就可以聊天。它主要是以「兴趣」作为区分&#xff0c;所以商家可以在社群中找到不少潜在客户。尤其是面向台湾、日本、泰国这些地区的商家&#xff0c;LINE在这些地区的普及度很高&#xff0c…

10000的单子谈崩了,坚持用beego什么骚操作?

今天有个客户询盘&#xff0c;想仿制一个旅游的网站&#xff0c;一句话差点让我当场拒绝&#xff1a;前端都是静态的&#xff0c;网上有很多工具可以下载源代码&#xff0c;后端接入支付&#xff0c;做个简单的统计&#xff0c;客服&#xff0c;再接入google地图就行了...... 简…

【JAVA重要知识 | 第六篇】Java集合类使用总结(List、Set、Map接口及常见实现类)以及常见面试题

文章目录 6.Java集合类使用总结6.1概览6.1.1集合接口类特性6.1.2List接口和Set接口的区别6.1.3简要介绍&#xff08;1&#xff09;List接口&#xff08;2&#xff09;Set接口&#xff08;3&#xff09;Map接口 6.2Collection接口6.3List接口6.3.1ArrayList6.3.2LinkedList—不常…

PyCharm无代码提示解决

PyCharm无代码提示解决方法 在使用PyCharm工具时&#xff0c;调用方法却无法进行提示&#xff0c;针对PyCharm无代码提示整理下解决方案 1、Python内置语法无智能提示 复现&#xff1a;我这里以urllib库读取网页内容为例&#xff0c;在通过urlopen(&#xff09;之后调用getur…