[c++] 查表 —— 策略模式和职责链模式的核心

查表法在工厂模式、策略模式以及职责链模式中都有使用。以工厂模式为例,表中存储的数据,key 是商品的类型,value 是生产这个商品的工厂。在生产商品的时候,直接根据商品类型从表中获得商品对应的工厂,然后通过工厂生产商品。如果没有表的话,那么类型判断和工厂实现都在一块,代码耦合度高,通过查表法可以对代码进行解耦。

1 策略模式

如下代码就体现了策略模式。有一个策略抽象类,Strategy,有 3 个派生策略类 StrategyA、StrategyB 和 StrategyC。函数 DoStrategy() 根据策略类型创建对应的策略,然后执行策略,这样的实现,策略的创建和使用耦合在一起。函数 DoStrategy1() 中根据策略类型进行查表,从 StrategyMap 中查到对应的策略,然后执行。如果使用 DoStrategy() 的方式,那么当策略发生变化的时候,需要对函数进行修改;如果使用 DoStrategy1() 的方式,那么策略发生变化的时候,只需要修改 StrategyMap 这个表即可,不需要对函数进行修改。虽然都需要修改,但是修改的范围不一样,使用策略模式之后,修改的返回仅限于 map 表,不会对算法部分进行修改。

策略就是将策略的定义、创建和使用进行解耦,DoStrategy1() 中的用法符合策略模式。解耦是为了简化代码,如果代码本身就比较简单,那么使用策略模式就显得不是很必要。所以设计模式的使用要具体情况具体分析,而不是什么情况下都用设计模式硬套。

#include <iostream>
#include <string>
#include <map>

// 策略定义
class Strategy {
public:
  virtual void StrategyImpl() = 0;
};

class StrategyA : public Strategy {
public:
  virtual void StrategyImpl() {
    std::cout << "StrategyA Impl" << std::endl;
  }
};

class StrategyB : public Strategy {
public:
  virtual void StrategyImpl() {
    std::cout << "StrategyB Impl" << std::endl;
  }
};

class StrategyC : public Strategy {
public:
  virtual void StrategyImpl() {
    std::cout << "StrategyC Impl" << std::endl;
  }
};


enum StrategyType {
  TypeA,
  TypeB,
  TypeC
};

void DoStrategy(StrategyType type) {
  Strategy *t;
  if (type == TypeA) {
    // 策略创建
    t = new StrategyA;
    // 策略使用
    t->StrategyImpl();
    delete t;
  } else if (type == TypeB) {
    t = new StrategyB;
    t->StrategyImpl();
    delete t;
  } else {
    t = new StrategyC;
    t->StrategyImpl();
    delete t;
  }
}

// 策略创建
std::map<StrategyType, Strategy *> StrategyMap = {
  {StrategyType::TypeA, new StrategyA},
  {StrategyType::TypeB, new StrategyB},
  {StrategyType::TypeC, new StrategyC}
};

// 策略使用
void DoStrategy1(StrategyType type) {
  if (StrategyMap.count(type)) {
    StrategyMap[type]->StrategyImpl();
  }
}

int main() {
  DoStrategy(StrategyType::TypeA);
  DoStrategy(StrategyType::TypeB);
  DoStrategy(StrategyType::TypeC);
  std::cout << "----------------" << std::endl;
  DoStrategy1(StrategyType::TypeA);
  DoStrategy1(StrategyType::TypeB);
  DoStrategy1(StrategyType::TypeC);
  return 0;
}

2 职责链模式

工厂模式,一次执行是生产一种商品,选择这个商品对应的工厂,然后生产;策略模式,一次是执行一种策略,从 map 中查找到策略,然后执行。工厂模式和职责链模式中使用的表是 map。职责链模式和工厂模式以及策略模式是不同的,职责链模式一次执行要执行职责链中的一个,多个或者全部。

贴吧网站,微博网站,短视频网站,用户在这些网站发布内容,都需要经过审核,审核通过才能发布。要审核的内容包括有没有涉黄,是不是反动等,这种场景使用职责链模式就比较合适。职责链模式中的规则一般维护在线性数据结构中,数组或者链表。

linux 中 iptables 工具基于内核的 netfilter 来实现,netfilter 框架在内核中的 ip 层的不同位置预留了 5 个 hook 点,每个 hook 点都可以插入一个或者多个报文处理规则,这些规则使用双向链表维护。当报文经过 hook 点时,如果有处理规则,便会使用规则进行处理。这是一个职责链模式使用的场景。

对于一些设计模式,比如模板模式,策略模式,职责链模式,可能你都没听说过这些名词,但是在实际工作中你已经使用过了。

类似于策略模式,职责链模式是将职责的定义,创建和使用进行解耦。如下代码,使用了职责链模式。

#include <iostream>
#include <string>
#include <vector>

// 职责定义
class ContentChecker {
public:
  virtual bool Permitted(const std::string &str) = 0;
};

class SexyChecker : public ContentChecker {
public:
  virtual bool Permitted(const std::string &str) {
    return true;
  }
};

class SensitiveChecker : public ContentChecker {
public:
  virtual bool Permitted(const std::string &str) {
    return true;
  }
};


bool CheckIsPermitted(const std::string str) {
  // 职责创建
  SexyChecker c1;
  SensitiveChecker c2;
  
  // 职责使用
  if (!c1.Permitted(str)) {
    return false;
  }

  if (!c2.Permitted(str)) {
    return false;
  }

  return true;
}

std::vector<ContentChecker *> checkers;
bool CheckIsPermitted1(const std::string str) {
  // 职责使用
  for (ContentChecker * checker : checkers) {
    if (checker->Permitted(str)) {
      return false;
    }
  }
  return true;
}

int main() {
  CheckIsPermitted("hello");
  
  // 职责创建
  checkers.push_back(new SexyChecker);
  checkers.push_back(new SensitiveChecker);
  CheckIsPermitted1("hello");
  return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/446826.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

多维时序 | Matlab实现BiTCN双向时间卷积神经网络多变量时间序列预测

多维时序 | Matlab实现BiTCN双向时间卷积神经网络多变量时间序列预测 目录 多维时序 | Matlab实现BiTCN双向时间卷积神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现BiTCN双向时间卷积神经网络多变量时间序列预测&#xff08;完整…

HTML概念

文章目录 1. HTML 概念1.1. 简介1.2. 思想1.3. 特点1.4. 语法1.4.1. 标签1.4.2. 属性1.4.3. 标签体1.4.4. 注释 2. HTML 实体2.1. 练习 3. HTML 结构3.1. <!DOCTYPE html>声明3.2. html根标签 4. 补充4.1. 管理文件4.2. 配置 VsCode4.2. 配置 VsCode 1. HTML 概念 1.1. 简…

QT画图功能

QT画图功能 每个QWidget都自带的功能&#xff0c;继承了QPainteDevice都可以使用QPainter来进行绘图。 画图需要调用paintEvent绘制事件&#xff0c;paintEvent事件时QWidget类自带的事件。 重写paintEvent事件。&#xff08;重写事件&#xff1a;如果父类有某个方法&#xff…

路由器动态路由配置

本博客为观看湖科大的教书匠系列计算机网络视频的学习笔记。 静态路由选择动态路由选择采用人工配置的方式给路由器添加网络路由、默认路由和特定主机路由等路由条目。路由器通过路由选择协议自动获取路由信息。静态路由选择简单、开销小&#xff0c;但不能及时适应网络状态(流…

【SOFARPC】SOFA入门实战

背景 由于最近交付项目&#xff0c;甲方使用了SOFA这套体系&#xff0c;之前虽然有过一些了解&#xff0c;但是真正实战还是没有那么熟悉&#xff0c;因此搭建一个实战的demo&#xff0c;熟悉一下相关内容。 SOFA SIMALE DEMO 项目搭建 项目目录结构 如上图所示&#xff0…

基于电鳗觅食优化算法(Electric eel foraging optimization,EEFO)的无人机三维路径规划(提供MATLAB代码)

一、无人机路径规划模型介绍 无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径&#xff0c;使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一&#xff0c;它可以通过算法和模型来确定无人机的航迹&#xff0c;以避开障碍物、优化飞行…

数据结构小记【Python/C++版】——BST树篇

一&#xff0c;基础概念 BST树&#xff0c;英文全称:Binary Search Tree&#xff0c;被称为二叉查找树或二叉搜索树。 如果一个二叉查找树非空&#xff0c;那么它具有如下性质&#xff1a; 1.左子树上所有节点的值小于根节点的值&#xff0c;节点上的值沿着边的方向递减。 2…

Python+Django+Html网页前后端指纹信息识别

程序示例精选 PythonDjangoHtml网页前后端指纹信息识别 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《PythonDjangoHtml网页前后端指纹信息识别》编写代码&#xff0c;代码整洁&#xff0…

【Spring Boot系列】快速上手 Spring Boot

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【大厂AI课学习笔记NO.75】人工智能产业的就业岗位分布

见上图&#xff0c;这是详细的人工智能产业的就业岗位分布情况。 就业领域包括物联网、智能芯片、机器学习、深度学习、计算机视觉CV、自然语言处理NLP、智慧语音、机器人、知识图谱等领域。 人工智能作为当今科技革命与产业变革的重要驱动力量&#xff0c;其就业岗位分布广泛…

【开源】SpringBoot框架开发软件学院思政案例库系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统管理员2.2 普通教师 三、系统展示四、核心代码4.1 查询思政案例4.2 审核思政案例4.3 查询思政课程4.4 思政案例点赞4.5 新增思政案例评语 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的软件学…

【新书推荐】19.1 DOS程序段前缀PSP

本节内容&#xff1a;介绍DOS程序段前缀及其应用。 ■程序段前缀PSP&#xff1a;DOS系统加载程序时&#xff0c;在程序段前设置一个具有256字节的信息区称为程序段前缀PSP。 ■终止程序的另一途径&#xff1a;利用程序段前缀PSP偏移地址0处的“INT 20H”终止程序。示例代码t19-…

每日五道java面试题之springMVC篇(二)

目录&#xff1a; 第一题. 请描述Spring MVC的工作流程&#xff1f;描述一下 DispatcherServlet 的工作流程&#xff1f;第二题. MVC是什么&#xff1f;MVC设计模式的好处有哪些?第三题. 注解原理是什么?第四题. Spring MVC常用的注解有哪些&#xff1f;第五题. SpingMvc中的…

Java EE之wait和notify

一.多线程的执行顺序 由于多个线程执行是抢占式执行&#xff0c;就会导致顺序不同&#xff0c;同时就会导致出现问题&#xff0c;就比如俩个线程同时对同一个变量进行修改&#xff0c;我们难以预知执行顺序。 但在实际开发中&#xff0c;我们希望代码按一定的逻辑顺序执行&am…

HTML5 Web Worker之性能优化

描述 由于 JavaScript 是单线程的&#xff0c;当执行比较耗时的任务时&#xff0c;就会阻塞主线程并导致页面无法响应&#xff0c;这就是 Web Workers 发挥作用的地方。它允许在一个单独的线程&#xff08;称为工作线程&#xff09;中执行耗时的任务。这使得 JavaScript 代码可…

Node.js:构建高性能网络应用的利器

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

吴恩达机器学习-可选实验室:逻辑回归,决策边界(Logistic Regression,Decision Boundary))

文章目录 目标数据集图数据逻辑回归模型复习逻辑回归和决策边界绘图决策边界恭喜 目标 在本实验中&#xff0c;你将:绘制逻辑回归模型的决策边界。这会让你更好地理解模型的预测。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_co…

基于WEB的服务器运行状态的监控分析系统

摘要: 随着云计算和电子商务规模的扩大和复杂性的增加&#xff0c;企业数据中心Web服务器数量急剧增加&#xff0c;用户对网络性能的要求也越来越高&#xff0c;导致企业和用户对数据中心的通信服务稳定性和快速响应要求越来越高。本作品提供一套行之有效的Web服务器性能监控系…

RabbitMQ - 05 - Direct交换机

部署demo项目 通过消息队列demo项目进行练习 相关配置看此贴 http://t.csdnimg.cn/hPk2T 注意 生产者消费者的yml文件也要配置好 什么是Direct交换机 Direct 交换机是 AMQP&#xff08;高级消息队列协议&#xff09;中的一种交换机类型&#xff0c;它根据消息的路由键&am…

【R语言】R包-探索ggtree进化树美化

文章目录 R包-探索ggtree进化树美化分析流程1. 关于包的下载2. 绘制一个基本的进化树图3. 添加样本名称3. 添加节点节点高亮4. 添加分组小结 R包-探索ggtree进化树美化 提示&#xff1a;基于nwk文件进行进化树美化&#xff0c;如更换进化树格式&#xff0c;添加分组、节点、遗传…