Java中常用的集合及方法(3)

 1、List(接上级--常用方法示例补充)

1.4 常用的方法

1.4.2 LinkedList(JDK8)

LinkedList是Java中一个实现了List接口和Deque接口的类,它采用链表结构存储数据,支持高效的插入和删除操作。

LinkedList中的所有方法及使用

使用示例:
 1、构造方法
LinkedList<String> list = new LinkedList<>();
2、添加元素
// 在链表末尾添加元素
list.add("Apple");

// 在指定索引位置插入元素
list.add(0, "Banana");
3、删除元素
// 删除第一个元素(头节点)
String removedHead = list.removeFirst();

// 删除最后一个元素(尾节点)
String removedTail = list.removeLast();

// 删除特定对象首次出现的位置
if (list.contains("Apple")) {
    list.removeFirstOccurrence("Apple");
}

// 删除特定对象最后一次出现的位置
if (list.contains("Apple")) {
    list.removeLastOccurrence("Apple");
}

// 移除链表中的第一个元素  
list.remove(); 

// 根据索引删除元素
list.remove(0);

// 移除指定元素(首次出现的)  
list.remove("Apple"); // 如果存在的话,移除Apple


// 移除所有指定元素集合  
list.removeAll(java.util.Arrays.asList("Apple", "Banana")); // 移除所有Apple和Banana(如果存在)
4、获取元素
// 获取第一个元素(头节点)
String firstItem = list.getFirst();

// 获取最后一个元素(尾节点)
String lastItem = list.getLast();

// 获取索引位置的元素
String itemAtIndex = list.get(0);
5、设置元素
// 设置第一个元素(头节点)
list.setFirst("Cherry");

// 设置最后一个元素(尾节点)
list.setLast("Cherry");

// 根据索引设置元素
list.set(0, "Cherry");
6、遍历和查找元素
// 使用迭代器遍历
Iterator<String> iterator = list.iterator();
while (iterator.hasNext()) {
    System.out.println(iterator.next());
}

// 使用for-each循环遍历
for (String element : list) {
    System.out.println(element);
}

// 查找元素是否存在
boolean contains = list.contains("Cherry");

// 获取元素的索引
int index = list.indexOf("Cherry");

// 查找指定元素最后一次出现的索引  
int lastIndex = list.lastIndexOf("Banana"); // 查找Banana的最后一个索引(如果只有一个,则和indexOf一样)
7、其他操作
// 获取列表大小(元素数量)
int size = list.size();

// 清空列表
list.clear();

// 判断列表是否为空
boolean isEmpty = list.isEmpty();

// 在链表头部添加元素
list.addFirst("Orange");

// 在链表尾部添加元素
list.addLast("Grape");

// 从链表头部弹出并返回元素
String poppedHead = list.pop();

// 从链表尾部移除并返回元素
String polledTail = list.pollLast();

// 检查链表是否包含另一个集合的所有元素
boolean allElementsPresent = list.containsAll(anotherList);

// 移除链表中所有与另一个集合相同的元素
list.removeAll(anotherList);

// 截取子列表
List<String> sublist = list.subList(fromIndex, toIndex);
8、排序操作

由于LinkedList实现了List接口,因此可以使用Collections.sort()进行排序,但请注意这将创建一个新的ArrayList来完成排序,并在排序后替换原链表内容。

Collections.sort(list);

如果是对某个实体类,需要根据不同的字段或逻辑来排序,也可以创建一个Comparator

例:

import java.util.Collections;  
import java.util.Comparator;  
import java.util.LinkedList;  
  
public class LinkedListExample {  
    public static void main(String[] args) {  
        LinkedList<Person> list = new LinkedList<>();  
        list.add(new Person("Alice", 25));  
        list.add(new Person("Bob", 20));  
        list.add(new Person("Charlie", 30));  
  
        // 自定义排序,按照年龄升序排序  
        Collections.sort(list, new Comparator<Person>() {  
            @Override  
            public int compare(Person p1, Person p2) {  
                return Integer.compare(p1.age, p2.age);  
            }  
        });  
        // 输出: [Bob, Alice, Charlie] 此处Person类需重写toString方法  
        System.out.println(list); 
    }  
}  
  
class Person {  
    String name;  
    int age;  
  
    public Person(String name, int age) {  
        this.name = name;  
        this.age = age;  
    }  
  
    @Override  
    public String toString() {  
        return name + " " + age;  
    }  
}

或者是使用 Java 8 的 Lambda 表达式进行排序:

import java.util.Collections;  
import java.util.LinkedList;  
import java.util.Comparator;  
  
public class LinkedListExample {  
    public static void main(String[] args) {  
        LinkedList<Person> list = new LinkedList<>();  
        list.add(new Person("Alice", 25));  
        list.add(new Person("Bob", 20));  
        list.add(new Person("Charlie", 30));  
  
        // 使用 Lambda 表达式进行自定义排序,按照年龄升序排序 :Person类需有getAge方法  
        Collections.sort(list, Comparator.comparingInt(Person::getAge));  
  
        // 输出: [Bob, Alice, Charlie] 
        System.out.println(list); 
    }  
}  
  
class Person {  
    String name;  
    int age;  
  
    public Person(String name, int age) {  
        this.name = name;  
        this.age = age;  
    }  
  
    public int getAge() {  
        return age;  
    }  
  
    @Override  
    public String toString() {  
        return name + " " + age;  
    }  
}
适合使用的场景:
  1. 频繁增删的场景:LinkedList在插入和删除元素时具有较高的效率,特别适用于需要频繁进行这些操作的情况。例如,当需要在列表的头部或中间位置插入或删除元素时,LinkedList是一个很好的选择。
  2. 头尾操作或插入指定位置的场景:LinkedList允许在链表的两端以及任何指定位置进行高效的插入和删除操作。这使得它在需要灵活操作列表不同位置的场景中特别有用。
  3. 顺序访问的场景:如果应用需要按照顺序访问列表中的元素,而不是随机访问,那么LinkedList可能是一个合适的选择。因为LinkedList是通过节点链接实现的,所以在顺序访问时性能较好。

注意:

        虽然LinkedList在插入和删除操作上具有优势,但在随机访问方面可能不如ArrayList高效。因此,在选择使用LinkedList还是其他数据结构时,需要根据具体应用场景的性能需求进行权衡。

        此外,还需要注意LinkedList的内存使用情况。由于LinkedList的每个节点都需要消耗一定的空间来存储数据和指针,因此在处理大量数据时,可能会占用更多的内存。因此,在使用LinkedList时,也需要关注内存管理和优化。

使用场景示例:
  1. 实现队列或栈:LinkedList可以作为队列(Queue)或栈(Stack)的数据结构实现。队列是一种先进先出(FIFO)的数据结构,常用于处理需要按顺序处理的任务或事件,如打印任务队列。栈是一种后进先出(LIFO)的数据结构,常用于需要按相反顺序处理元素的情况,如函数调用栈。LinkedList的节点可以通过其指针关系方便地实现这些操作。
  2. 链表操作算法:在需要实现链表相关的算法时,LinkedList是一个很好的选择。例如,你可以使用LinkedList来实现链表的合并、反转、排序等算法。这些算法通常需要对链表进行频繁的插入和删除操作,LinkedList的高效性使得这些算法的实现更加高效。
  3. 动态插入和删除元素:在某些应用中,可能需要频繁地在列表的任意位置插入或删除元素。例如,在一个需要用户动态添加和删除任务的待办事项列表中,LinkedList就能够提供高效的插入和删除操作。由于LinkedList不需要像ArrayList那样移动大量元素来保持连续的内存空间,因此在这种场景下,LinkedList的性能优势会更为明显。
使用时需要注意的问题:

在使用LinkedList时,需要注意以下几个关键问题:

  1. 节点数据的准确性:确保链表中的每个节点都包含正确的数据。在插入或修改节点数据时,需要仔细核对数据的正确性,避免因为数据错误导致链表的状态不一致。

  2. 节点指针的正确性:LinkedList中的每个节点都有一个指向下一个节点的指针。在插入、删除或修改节点时,必须确保这些指针的正确性。如果指针设置错误,可能会导致链表断裂或形成循环,从而破坏链表的完整性。

  3. 内存管理:在创建新节点时,需要分配内存;在删除节点时,需要释放内存。必须确保在合适的时机进行内存分配和释放,避免内存泄漏或内存不足的问题。

  4. 并发安全:LinkedList不是线程安全的。在多线程环境下,如果多个线程同时修改LinkedList,可能会导致数据不一致或其他并发问题。因此,在并发环境下使用LinkedList时,需要采取适当的同步措施,例如使用锁或同步块来保护链表的访问和修改操作。

  5. 遍历和访问方式:LinkedList是基于节点链接实现的,因此在遍历和访问链表元素时,需要使用迭代器或循环遍历的方式。在遍历过程中,需要注意避免死循环或跳过某些节点的问题。同时,由于LinkedList在随机访问方面不如ArrayList高效,因此在需要频繁进行随机访问的场景下,ArrayList可能更合适。

  6. 性能考虑:虽然LinkedList在插入和删除元素时具有较高的效率,但在遍历元素时可能不如ArrayList快。因此,在选择使用LinkedList还是ArrayList时,需要根据具体应用场景的性能需求进行权衡。

LinkedList的扩容?

注意:LinkedList不存在扩容的说法

        因为LinkedList是基于双向链表实现的,它没有固定的初始化大小,也没有特定的扩容机制。原因在于链表结构的特点使其可以在需要时动态地添加或删除节点,而不需要像数组那样预先分配或调整固定大小的内存空间。因此,LinkedList在添加元素时,只需要在链表头部或尾部创建新的节点,或者在指定位置插入新的节点即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/445423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】深度解剖多态

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;了解什么是多态&#xff0c;熟练掌握多态的定义&a…

NIO学习总结(一)——简介、Channel、Buffer

相关代码地址&#xff1a;nio_demo_learn: nio学习相关代码 (gitee.com) 一、BIO、NIO和AIO 1.1 阻塞IO&#xff08;BIO&#xff09; BIO即同步阻塞IO&#xff0c;实现模型为一个连接就需要一个线程去处理。这种方式简单来说就是当有客户端来请求服务器时&#xff0c;服务器就…

分布式搜索elasticsearch

1.初识elasticsearch 1.1.了解ES 1.1.1.elasticsearch的作用 elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助我们从海量数据中快速找到需要的内容 例如&#xff1a; 在GitHub搜索代码 在电商网站搜索商品 在百度搜索答案…

MySQL主从读写分离之Proxysql(openEuler版)

实验目的&#xff1a; 基于proxysql实现MySQL的主从读写分离。 实验过程&#xff1a; 前期准备&#xff1a; 一共有四台虚拟机&#xff0c;其中三台为配置好的一主两从虚拟机&#xff0c;还有一台干净的虚拟机用来配置proxysql。 主机名地址master192.168.27.137node1192.…

NGINX源码安装详细配置文档

NGINX源码安装详细配置文档 一、基础Linux指令 查看nginx进程是否启动&#xff1a;ps -ef | grep nginx 关闭防火墙&#xff1a;systemctl stop firewalld 开放80端口&#xff1a;firewall-cmd --zonepublic --add-port80/tcp --permanent 关闭80端口&#xff1a;firewall-cmd …

(C语言)strcpy与strcpy详解,与模拟实现

目录 1. strcpy strcpy模拟实现&#xff1a; 实现方法1&#xff1a; 实现方法2&#xff1a; 2. strcat strcat模拟实现&#xff1a; 1. strcpy 作用&#xff1a;完成字符串的复制。 头文件&#xff1a;<string.h> destination是字符串要复制到的地点&#xff0c;s…

redis持久化-rdb

redis持久化-rdb策略 redis持久化rdb策略触发时机自动触发手动触发bgsave redis持久化 &#x1f680;我们知道redis是将数据存储在内存当中的&#xff0c;通常使用来作为关系型数据库的缓存使用的&#xff0c;以缓解当大量请求到来时关系型数据库的压力。 &#x1f680;既然数…

[LeetCode][226]翻转二叉树

题目 226. 翻转二叉树 给你一棵二叉树的根节点 root&#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1] 示例 2&#xff1a; 输入&#xff1a;root [2,1,3] 输出&#x…

025—pandas 根多列判断不在其他列的数据

思路 是有两个相同结构的数据表&#xff0c;已知第二个表是第一个表的部分数据&#xff0c;需要以其中两列为单位&#xff0c;判断在第一个表中存在&#xff0c;在另外一个表中不存在的数据。 思路&#xff1a; 我们先将 df1 和 df2 的 x、y 列取出&#xff0c;组合为元组形成…

013 Linux_互斥

前言 本文将会向你介绍互斥的概念&#xff0c;如何加锁与解锁&#xff0c;互斥锁的底层原理是什么 线程ID及其地址空间布局 每个线程拥有独立的线程上下文&#xff1a;一个唯一的整数线程ID, 独立的栈和栈指针&#xff0c;程序计数器&#xff0c;通用的寄存器和条件码。 和其…

【Python】成功解决IndexError: list index out of range

【Python】成功解决IndexError: list index out of range &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望得到您的订…

整除光棍(pta团体天梯练习题)模拟手算除法c++

这里所谓的“光棍”&#xff0c;并不是指单身汪啦~ 说的是全部由1组成的数字&#xff0c;比如1、11、111、1111等。传说任何一个光棍都能被一个不以5结尾的奇数整除。比如&#xff0c;111111就可以被13整除。 现在&#xff0c;你的程序要读入一个整数x&#xff0c;这个整数一定…

朴素贝叶斯 | 多分类问题

目录 一. 贝叶斯公式的推导二. 朴素贝叶斯1. 离散的朴素贝叶斯朴素贝叶斯导入示例 离散的朴素贝叶斯训练 2. 连续的朴素贝叶斯3. 伯努利朴素贝叶斯4. 多项式朴素贝叶斯4.1 Laplace平滑4.2 Lidstone平滑 三. 概率图模型1. 贝叶斯网络(Bayesian Network)1.1 全连接贝叶斯网络1.2 …

【Redis知识点总结】(二)——Redis高性能IO模型剖析

Redis知识点总结&#xff08;二&#xff09;——Redis高性能IO模型及其事件驱动框架剖析 IO多路复用传统的阻塞式IO同步非阻塞IOIO多路复用机制 Redis的IO模型Redis的事件驱动框架 IO多路复用 Redis的高性能的秘密&#xff0c;在于它底层使用了IO多路复用这种高性能的网络IO&a…

[java入门到精通] 18 字符流,编码表,对象流,其他流

今日目标 编码表 字符输出流 字符输入流 字符缓冲流 转换流 对象操作流 装饰模式 commons-iojar包 1 编码表 1.1 思考&#xff1a; 既然字节流可以操作所有文件&#xff0c;那么为什么还要学习字符流 &#xff1f; 如果使用字节流 , 把文本文件中的内容读取到内存时…

ODP(Open Data Plane)

1. 摘要 本文档旨在指导新的ODP应用程序开发人员。 有关ODP的更多详细信息&#xff0c;请参见 ODP 主页。 Overview of a system running ODP applications ODP是一份API规范&#xff0c;为高性能网络应用程序的实现提供平台独立性、自动硬件加速和CPU扩展。 本文档介绍如何充…

DHCP中继实验(思科)

华为设备参考&#xff1a;DHCP中继实验&#xff08;华为&#xff09; 一&#xff0c;技术简介 DHCP中继&#xff0c;可以实现在不同子网和物理网段之间处理和转发DHCP信息的功能。如果DHCP客户机与DHCP服务器在同一个物理网段&#xff0c;则客户机可以正确地获得动态分配的IP…

OS-Copilot:实现具有自我完善能力的通用计算机智能体

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ AI 缩小了人类间的知识和技术差距 论文标题&#xff1a;OS-Copilot: Towards Generalist Computer Agents with Self-Improvement 论文链接&#xff1a;https://arxiv.org/abs/2402.07456 项目主页&a…

Hadoop生态选择(一)

一、项目框架 1.1技术选型 技术选型主要考虑因素:维护成本、总成本预算、数据量大小、业务需求、行业内经验、技术成熟度。 数据采集传输:Flume&#xff0c;Kafka&#xff0c;DataX&#xff0c;Maxwell&#xff0c;Sqoop&#xff0c;Logstash数据存储:MySQL&#xff0c;HDFS…

全网最最最详细的centos7如何设置静态ip

以下步骤假设你已经有了管理员权限&#xff08;或者可以使用sudo&#xff09;以及你的网络接口名称&#xff08;例如ens33&#xff09;。 步骤 1: 查找网络接口名称 打开终端。运行命令nmcli d来查看所有网络设备及其状态。找到你想配置的设备名称&#xff0c;比如ens33。 步…