【Pytorch】进阶学习:深入解析 sklearn.metrics 中的 classification_report 函数---分类性能评估的利器

【Pytorch】进阶学习:深入解析 sklearn.metrics 中的 classification_report 函数—分类性能评估的利器
在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 📊一、分类性能评估的重要性
  • 🔍二、深入了解classification_report函数
  • 🚀三、使用classification_report评估模型性能
  • 🔎四、解读classification_report的内容
  • 🎯五、优化模型性能
  • 📈六、使用classification_report进行模型选择
  • 💡七、总结与进一步学习

📊一、分类性能评估的重要性

在机器学习中,分类任务是非常常见的一类问题。当我们训练一个分类模型后,如何评估模型的性能是一个至关重要的问题。sklearn.metrics中的classification_report函数就是评估分类模型性能的一个利器。通过这个函数,我们可以得到模型的准确率、精确率、召回率以及F1分数等指标,从而全面评估模型的性能。

🔍二、深入了解classification_report函数

classification_report函数是sklearn.metrics模块中的一个函数,它接收真实标签和预测标签作为输入,并返回一个文本报告,展示了主要分类指标的详细信息。

下面是classification_report函数的基本用法:

from sklearn.metrics import classification_report

y_true = [0, 1, 2, 2, 0]  # 真实标签
y_pred = [0, 0, 2, 2, 0]  # 预测标签

report = classification_report(y_true, y_pred)
print(report)

输出内容将包括每个类别的精确度、召回率、F1分数以及支持数(即该类别的样本数):

              precision    recall  f1-score   support

           0       0.67      1.00      0.80         2
           1       0.00      0.00      0.00         1
           2       1.00      1.00      1.00         2

    accuracy                           0.80         5
   macro avg       0.56      0.67      0.60         5
weighted avg       0.67      0.80      0.72         5

🚀三、使用classification_report评估模型性能

在机器学习的实践中,我们通常会在验证集或测试集上评估模型的性能。下面是一个使用classification_report评估模型性能的示例:

首先,我们定义并训练一个支持向量机分类器model,并且我们有一个测试集X_test和对应的真实标签y_test

# 导入sklearn.datasets模块中的load_iris函数,用于加载鸢尾花数据集
from sklearn.datasets import load_iris

# 导入sklearn.metrics模块中的classification_report函数,用于生成分类报告
from sklearn.metrics import classification_report

# 导入sklearn.model_selection模块中的train_test_split函数,用于划分数据集为训练集和测试集
from sklearn.model_selection import train_test_split

# 导入sklearn.svm模块中的SVC类,用于创建支持向量机分类器
from sklearn.svm import SVC

# 使用load_iris函数加载鸢尾花数据集
iris = load_iris()

# 获取数据集中的特征数据,存储在变量X中
X = iris.data

# 获取数据集中的目标标签,存储在变量y中
y = iris.target

# 使用train_test_split函数划分数据集,其中80%的数据作为训练集,20%的数据作为测试集
# random_state参数用于设置随机数生成器的种子,确保每次划分的结果一致
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建一个SVC分类器对象,使用线性核函数,C值为1,并设置随机数生成器的种子为42
model = SVC(kernel='linear', C=1, random_state=42)

# 使用fit方法对模型进行训练,传入训练集的特征数据和目标标签
model.fit(X_train, y_train)

# 使用训练好的模型对测试集进行预测,返回预测的目标标签
y_pred = model.predict(X_test)

# 使用classification_report函数生成分类报告,传入测试集的真实目标标签和预测的目标标签
# target_names参数传入鸢尾花的种类名称,用于在报告中显示具体的类别名称
report = classification_report(y_test, y_pred, target_names=iris.target_names)

# 打印分类报告,展示每个类别的精确度、召回率、F1分数等信息
print(report)

这段代码首先加载了鸢尾花数据集,并划分了训练集和测试集。然后,我们使用线性支持向量机(SVC)训练了一个分类模型,并在测试集上进行了预测。最后,我们使用classification_report函数打印出了模型的评估报告:

              precision    recall  f1-score   support

      setosa       1.00      1.00      1.00        10
  versicolor       1.00      1.00      1.00         9
   virginica       1.00      1.00      1.00        11

    accuracy                           1.00        30
   macro avg       1.00      1.00      1.00        30
weighted avg       1.00      1.00      1.00        30

🔎四、解读classification_report的内容

classification_report的输出内容包含了丰富的信息,下面我们来解读一下这些内容:

  • precision:精确率,表示预测为正例的样本中真正为正例的比例。精确率越高,说明模型预测为正例的样本中,真正为正例的样本越多。
  • recall:召回率,表示真正为正例的样本中被预测为正例的比例。召回率越高,说明模型找出了越多的真正正例。
  • f1-score:F1分数,是精确率和召回率的调和平均数。F1分数越高,说明模型在精确率和召回率之间取得了更好的平衡。
  • support:支持数,即该类别的样本数。

此外,classification_report还会输出每个类别的上述指标以及它们的平均值。这些指标可以帮助我们全面评估模型的性能,并根据需要调整模型参数或尝试其他模型。

🎯五、优化模型性能

当我们得到classification_report的评估结果后,如果发现模型的性能不佳,我们可以尝试一些方法来优化模型性能:

  1. 调整模型参数:根据评估结果,我们可以调整模型的参数,如改变学习率、增加迭代次数、调整正则化项等,以提高模型的性能。
  2. 特征工程:通过特征选择、特征提取或特征变换等方法,改善输入特征的质量,从而提高模型的性能。
  3. 尝试其他模型:如果当前模型的性能无法满足需求,我们可以尝试其他类型的模型,如决策树、随机森林、神经网络等,看是否能够获得更好的性能。

📈六、使用classification_report进行模型选择

当我们有多个候选模型时,可以使用classification_report来辅助我们进行模型选择。通过比较不同模型在测试集上的评估报告,我们可以选择性能最优的模型。

下面是一个简单的示例,展示了如何使用classification_report来比较两个模型的性能:

from sklearn.datasets import load_iris
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


# 训练第一个模型:支持向量机
model1 = SVC(kernel='linear', C=1, random_state=42)
model1.fit(X_train, y_train)
y_pred1 = model1.predict(X_test)
report1 = classification_report(y_test, y_pred1, target_names=iris.target_names)
print("Model 1 (SVC) Report:\n", report1)

# 训练第二个模型:K近邻
model2 = KNeighborsClassifier(n_neighbors=3)
model2.fit(X_train, y_train)
y_pred2 = model2.predict(X_test)
report2 = classification_report(y_test, y_pred2, target_names=iris.target_names)
print("Model 2 (KNN) Report:\n", report2)

在上面的代码中,我们训练了两个不同的模型:支持向量机(SVC)和K近邻(KNN),并分别打印了它们的classification_report。通过比较两个报告的指标,我们可以选择性能更好的模型。

💡七、总结与进一步学习

classification_report是评估分类模型性能的一个强大工具,它提供了丰富的指标来帮助我们全面评估模型的性能。通过解读报告中的精确率、召回率、F1分数等指标,我们可以了解模型在不同类别上的表现,并根据需要进行优化。

要进一步提高模型性能,除了调整模型参数和进行特征工程外,还可以尝试集成学习、深度学习等更高级的方法。此外,了解不同评估指标的含义和优缺点也是非常重要的,这有助于我们更准确地评估模型的性能。

希望本博客能够帮助你深入理解classification_report函数,并学会如何使用它来评估和优化分类模型的性能。如果你对机器学习领域的其他话题感兴趣,欢迎继续探索和学习!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/444724.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

宽度优先搜索算法(BFS)

宽度优先搜索算法(BFS)是什么? 宽度优先搜索算法(BFS)(也称为广度优先搜索)主要运用于树、图和矩阵(这三种可以都归类在图中),用于在图中从起始顶点开始逐层…

狂雨CMS-采集规则(novelfull.com)

1. 填写采集规则的基本信息 首先点击采集管理中的添加按钮来新建规则: 然后进入到信息页面填写,包括: 规则名称:一般以要采集的源站名命名。 网站编码:默认自动检测即可。 类型:根据网站类型来选择&#x…

java ~ word模板填充字符后输出到指定目录

word文件格式&#xff1a; jar包&#xff1a; <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.10.0</version></dependency>样例代码&#xff1a; // 封装参数集合Map<String, Ob…

常见3大web漏洞

常见3大web漏洞 XSS攻击 描述&#xff1a; 跨站脚本&#xff08;cross site script&#xff09;-简称XSS&#xff0c;常出现在web应用中的计算机安全漏桶、web应用中的主流攻击方式。 攻击原理&#xff1a; 攻击者利用网站未对用户提交数据进行转义处理或者过滤不足的缺点。 …

201909 青少年软件编程(Scratch)等级考试试卷(一级)

第1题&#xff1a;【 单选题】 小明在做一个采访的小动画&#xff0c;想让主持人角色说“大家好&#xff01;”3秒钟&#xff0c;用下列程序中的哪一个可以实现呢&#xff1f;&#xff08; &#xff09; A: B: C: D: 【正确答案】: B 【试题解析】 : 第2题&#xff1a…

201906 青少年软件编程(Scratch)等级考试试卷(一级)

第1题&#xff1a;【 单选题】 从下列哪个区域中可以找到编程所需指令积木&#xff08; &#xff09; A:舞台区 B:指令标签区 C:角色列表区 D:造型 【正确答案】: B 【试题解析】 : 第2题&#xff1a;【 单选题】 下图中共有几个三角形&#xff08; &#xff09; A:3 个…

机器学习-pytorch1(持续更新)

上一节我们学习了机器学习的线性模型和非线性模型的机器学习基础知识&#xff0c;这一节主要将公式变为代码。 代码编写网站&#xff1a;https://colab.research.google.com/drive 学习课程链接&#xff1a;ML 2022 Spring 1、Load Data&#xff08;读取数据&#xff09; 这…

领域模型设计-COLA架构

前言 当我们需要创建的新应用的时候&#xff0c;往往需要站在一个长远的角度来设计我们的系统架构。有时候我们接手一个老的应用的时候&#xff0c;会发现由于创建之初没有好好规划系统架构&#xff0c;导致我们后期开分成本和维护成本都非常高。近些年来领域模型的系统设计非常…

Day26:安全开发-PHP应用模版引用Smarty渲染MVC模型数据联动RCE安全

目录 新闻列表 自写模版引用 Smarty模版引用 代码RCE安全测试 思维导图 PHP知识点&#xff1a; 功能&#xff1a;新闻列表&#xff0c;会员中心&#xff0c;资源下载&#xff0c;留言版&#xff0c;后台模块&#xff0c;模版引用&#xff0c;框架开发等 技术&#xff1a;输…

Pygame教程07:键盘常量+键盘事件的2种捕捉方式

------------★Pygame系列教程★------------ Pygame教程01&#xff1a;初识pygame游戏模块 Pygame教程02&#xff1a;图片的加载缩放旋转显示操作 Pygame教程03&#xff1a;文本显示字体加载transform方法 Pygame教程04&#xff1a;draw方法绘制矩形、多边形、圆、椭圆、弧…

【Java探索之旅】数据类型与变量,字面常量,整型变量

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; Java入门到精通 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、字面常量二、数据类型三、变量3.1 变量概念3.2 语法格式 四、整型变量4.1 整型变…

运维随录实战(13)之docker搭建mysql集群(pxc)

了解 MySQL 集群之前,先看看单节点数据库的弊病 大型互联网程序用户群体庞大,所以架构需要特殊设计。单节点数据库无法满足大并发时性能上的要求。单节点的数据库没有冗余设计,无法满足高可用。单节点 MySQL无法承载巨大的业务量,数据库负载巨大常见 MySQL 集群方案 Re…

.NET高级面试指南专题十六【 装饰器模式介绍,包装对象来包裹原始对象】

装饰器模式&#xff08;Decorator Pattern&#xff09;是一种结构型设计模式&#xff0c;用于动态地给对象添加额外的职责&#xff0c;而不改变其原始类的结构。它允许向对象添加行为&#xff0c;而无需生成子类。 实现原理&#xff1a; 装饰器模式通过创建一个包装对象来包裹原…

云原生之容器编排实践-ruoyi-cloud项目部署到K8S:Nginx1.25.3

背景 前面搭建好了 Kubernetes 集群与私有镜像仓库&#xff0c;终于要进入服务编排的实践环节了。本系列拿 ruoyi-cloud 项目进行练手&#xff0c;按照 MySQL &#xff0c; Nacos &#xff0c; Redis &#xff0c; Nginx &#xff0c; Gateway &#xff0c; Auth &#xff0c;…

DDoS和CC攻击的原理

目前最常见的网络攻击方式就是CC攻击和DDoS攻击这两种&#xff0c;很多互联网企业服务器遭到攻击后接入我们德迅云安全高防时会问到&#xff0c;什么是CC攻击&#xff0c;什么又是DDoS攻击&#xff0c;这两个有什么区别的&#xff0c;其实清楚它们的攻击原理&#xff0c;也就知…

C#,数值计算,用割线法(Secant Method)求方程根的算法与源代码

1 割线法 割线法用于求方程 f(x) 0 的根。它是从根的两个不同估计 x1 和 x2 开始的。这是一个迭代过程&#xff0c;包括对根的线性插值。如果两个中间值之间的差值小于收敛因子&#xff0c;则迭代停止。 亦称弦截法&#xff0c;又称线性插值法.一种迭代法.指用割线近似曲线求…

【JavaScript 漫游】【033】Cookie 总结

文章简介 本篇文章为【JavaScript 漫游】专栏的第 033 篇文章&#xff0c;主要记录了浏览器模型中 Cookie 相关的知识点。 Cookie 概述 Cookie 是服务器保存在浏览器的一小段文本信息&#xff0c;一般大小不能超过4KB。浏览器每次向服务器发出请求&#xff0c;就会自动附上这…

gensim 实现 TF-IDF;textRank 关键词提取

目录 TF-IDF 提取关键词 介绍 代码 textRAnk 提取关键词 这里只写了两种简单的提取方法&#xff0c;不需要理解上下文&#xff0c;如果需要基于一些语义提取关键词用 LDA&#xff1a;TF-IDF&#xff0c;textRank&#xff0c;LSI_LDA 关键词提取-CSDN博客 TF-IDF 提取关键词…

【框架学习 | 第三篇】Spring上篇(Spring入门、核心功能、Spring Bean——>定义、作用域、生命周期、依赖注入)

文章目录 1.Spring简述1.1什么是Spring框架&#xff1f;1.2Spring的核心功能1.2.1 IOC&#xff08;1&#xff09;IOC介绍&#xff08;2&#xff09;控制&#xff1f;反转&#xff1f; 1.2.2 AOP&#xff08;1&#xff09;AOP介绍&#xff08;2&#xff09;专业术语&#xff08;…

BadUsb制作

BadUsb制作 一个树莓派pico kali监听 需要的文件 https://pan.baidu.com/s/1_kyzXIqk9JWHGHstTgq7sQ?pwd6666 1.将pico插入电脑 2.将Bad USB固件中的文件复制到pico中&#xff0c;pico会重启 3.将Bad USB目录文件复制进去&#xff08;打开Bad USB目录文件复制&#xff09; …