数据结构 - 堆(优先队列)+ 堆的应用 + 堆练习

文章目录

  • 前言
      • 一、什么是堆
      • 二、堆又分为大根堆和小根堆
      • 三、由于堆的逻辑结构被看成完全二叉树,那么我们先来了解一下完全二叉树。
      • 四、堆使用数组还是链表储存数据呢?
      • 五、数组构建二叉树和父子节点之间的定位
      • 六、堆进行的操作
      • 七、实现小根堆
        • 1、堆的初始化
        • 2、堆在数组尾部插入
        • 3、堆在数组头部删除
        • 4、获取堆顶的元素
        • 5、获取堆的元素个数
        • 6、判断堆是否为空
        • 7、堆的销毁
        • 8、总代码一览
    • 堆的应用
      • 一、堆排序
        • 1、原理:
        • 2、代码实现
      • 二、TOP-K问题
    • 堆练习
      • 一、数组中两个元素的最大乘积
      • 一、最小数字游戏


前言

1、本文章适合新学和复习用,都是用c语言实现的,包含了堆的讲解、堆的应用、堆的练习。
2、有图解和代码都注释,放心食用哦

那么开始:
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/bacf8ea9ec574eb58a8f2e0dc86f9fcd.jpeg

一、什么是堆

堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看作一棵完全二叉树的数组。

二、堆又分为大根堆和小根堆

大根堆:父节点大于左右孩子节点 。
小根堆:父节点小于左右孩子节点。

大小根堆图:
在这里插入图片描述

三、由于堆的逻辑结构被看成完全二叉树,那么我们先来了解一下完全二叉树。

完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。要注意的是满二叉树是一种特殊的完全二叉树。

完全二叉树与非完全二叉树图:
在这里插入图片描述

四、堆使用数组还是链表储存数据呢?

我建议使用数组
数组的优点:

(1)方便定位,可以通过子节点求父节点,也可以通过父节点求子节点。
(2)占用空间相对链表小。
(3)堆的逻辑结构是完全二叉树,完全二叉树使用数组可以实现连续存储,不会浪费多余的空间

数组的缺点:

要经常扩容,效率降低。

利大于弊,所以数组是一个很好的选择。

五、数组构建二叉树和父子节点之间的定位

在这里插入图片描述

六、堆进行的操作

a.在尾部插入元素。
b.在头部删除元素 。
c.在头部获取元素。
d.察看堆的元素个数。
f.判断堆是否为空。

这些操作是不是很熟悉捏,其实这些操作和队列是一样的,但是a,b,d这些核心操作和普通队列是完全不一样的,因为插入和删除利用了堆来实现使最大元素(大根堆)或者最小元素(小根堆)放到顶部,取元素的时候取的是最大或者最小的元素,这使队列不在是先进先出,而是大元素或者小的元素先出,又因为堆的效率很高,所以我们也将其称为最高效的优先队列。

堆与普通队列对比
操作	普通队列	堆(优先队列)
插入数据	在队尾插入,不会做出改变	在队尾插入之后会调整
删除数据	在队头删除,不会做出改变	在队头(堆顶)删除后再次进行调整
获取数据	按照先进先出的规则来获取	获取堆中最大或者最小的元素

七、实现小根堆

1、堆的初始化

开始对堆的结构体的成员进行初始化,如数组容量,数组大小,申请空间。

堆的结构体:

//定义数据类型
typedef int DATATYPE ;
//堆结构体
typedef struct priority_queues
{
	//数组
	DATATYPE* arr;
	//大小  指向的是有数据后的一个位置
	int size;
	//容量
	int capacity;
}pq;

对堆结构体的初始化:

//初始化
void IintQueue(pq* p)
{
	//断言判断
	assert(p);

     p->arr = NULL;
	//开始下标为0
	p->size = 0;
	//开始我们给一个容量为4
	p->capacity = 4;
	//申请一个空间大小为4
	DATATYPE* tmp = (DATATYPE*)realloc(p->arr, sizeof(DATATYPE) * p->capacity);
	//判断是否申请成功
	if (tmp == NULL)
	{
		printf("申请失败");
		exit(-1);
	}
	p->arr = tmp;
}
2、堆在数组尾部插入

(1)堆在插入元素是一个核心的操作就是要进行调整,进行建小根堆使最小的元素调整到堆顶的位置。
(2)那么如何建小根堆呢?
我们接下来学习一个方法:向上调整法

那么向上调整法是从哪里开始调整呢?答案是每一个新插入的元素。
第一步:利用孩子的下标(插入数据的下标)(child) 找到父节点的下标(father):father = (child-1) / 2
第二步:保存孩子的元素(tmp)
第三步:用孩子节点的元素和父节点元素对比,若孩子的元素比父亲的大就直接打破,调整结束,若孩子节点的元素比父亲节点的元素小就将父节点的元素节点赋给孩子节点并child = father 让之前父节点的位置作为新孩子下标继续寻找下一个父节点的下标:father = (child-1) / 2, 以此往上调整直到遇到比tmp大的父节点或者child = 0(没有父节点)时调整结束。

(3)图解:
在这里插入图片描述

(4)代码实现:

//向上调整
void AdjustUpwards(DATATYPE* arr, int child)
{
     //父节点下标
	int father = 0;
	father = (child - 1) / 2;
	//保存插入元素
	DATATYPE tmp = arr[child];

	while (child >0)
	{
		if (arr[father] <= tmp)
		{
			break;
		}
		else
		{
			arr[child] = arr[father];
			child = father; //改变子节点下标
			father = (child - 1) / 2;//再找父节点下标
		}
	}
	//返回元素
	arr[child] = tmp;
}

(5)接下来就是插入元素:将元素插入到尾部,并进行调整。
代码实现:

//插入元素
void Priority_Queue_Push(pq* p, DATATYPE val)
{
 	//断言
	assert(p);

	//判断是否满了
	if (p->size == p->capacity)
	{
		DATATYPE* tmp = (DATATYPE*)realloc(p->arr, sizeof(DATATYPE) * p->capacity * 2);
		if (tmp == NULL)
		{
			printf("申请失败");
			exit(-1);
		}
		p->arr = tmp;
		p->capacity = p->capacity * 2;
	}
	
	//插入数据
	p->arr[p->size] = val;
	p->size++;

	//调整
	AdjustUpwards(p->arr, p->size-1);
	
}

经过上述步骤之后,堆顶的数据就是整个堆中最小的元素了
(6)插入操作的时间复杂度

最坏的情况:从底位置到0 ,走h(层次高度), n(数组大小)=2^h(层次高度)-1;所以h=logn-1(以2为底)
最好的情况:不需要调整
综上:时间复杂度为: O(longN)

3、堆在数组头部删除

(1)怎么样将头部元素删除呢?,我们是用数组最后的一个元素将第一个元素覆盖即arr[0] =arr[size-1],并且size–,但是这样就会破坏掉我们的堆,因此我们还要学习另一个方法去重新调整堆,这个方法就向下调整法。
(2)向下调整法 向下调整法顾名思义就是向下调整堆,那么从哪里向下呢?答案是:从父节点向下。
第一步:利用需要调整的下标作为父节点下标,找到左右孩子节点的下标。
第二步:保存该父节点下标的元素(tmp)
第三步:先找到左右孩子中元素大小最小的,再将其与tmp对比,若是tmp小于孩子节点(左或右孩子)元素,arr[father] =tmp,然后结束调整,若tmp大于孩子节点元素,就将孩子节点的元素赋给父节点位置,再改变父节点下标,使孩子节点的下标作为父节点下标,再重新寻找新的孩子下标(arr[father] = arr[child] , father = child ,child = father*2+1 或 child = father*2+2),直到遇到比tmp大的孩子节点元素(左或右孩子)时或者child >size-1时结束调整。

(3)图解:
在这里插入图片描述
(4)代码实现:

//向下调整
void Build_Biles(DATATYPE* arr, int father,int size)
{
	//找左孩子节点和保存数据
	int child = father * 2 + 1;
	int tmp = arr[father];

	while (child < size)
	{
		//找最小那个孩子节点
		if (child + 1 < size && arr[child] > arr[child + 1])
		{
			child++;
		}

		//对比
		if (tmp > arr[child])
		{
			arr[father] = arr[child];
			father = child;
			child= father * 2 + 1;
		}
		else
		{
			break;
		}
	}

	//返回元素
	arr[father] = tmp;
}

(5)删除操作,代码实现:

//弹出数据
bool Priority_Queue_Pop(pq* p)
{
	assert(p);

	//为空无法删除
	if (p->size == 0)
	{
		return false;
	}
	//只有一个元素时,无需调整
	else if (p->size == 1)
	{
		p->size--;
	}
	//存在多个元素时,需要调整
	else
	{
		p->arr[0] = p->arr[p->size - 1];
		p->size--;
		//调整
		Build_Biles(p->arr, 0, p->size);
	}
	
	return true;
}

经过上述步骤之后,数组调整为小堆
(6)删除操作的时间复杂度

最坏的情况:从0位置到底,走h(层次高度), n(数组大小)=2^h(层次高度)-1;所以h=logn-1(以2为底)
最好的情况:不需要调整
综上:时间复杂度为: O(longN)

4、获取堆顶的元素

通过判断堆如果不为空就可以返回堆顶元素,要是为空就返回-1,堆顶元素就是下标为 0 的位置,并且该元素是整个堆最小的元素。

代码实现:

//返回数据
DATATYPE Priority_Queue_Top(pq* p)
{
	assert(p);
     //判断是否为空
	if (p->size == 0)
	{
		return -1;
	}

	return p->arr[0];
}
5、获取堆的元素个数

直接返回结构体中的size即可。

代码实现:

//返回元素个数
int Priority_Queue_Size(pq* p)
{
	assert(p);
	return p->size;
}
6、判断堆是否为空

通过判断结构体中的size是否为0即可判断是否为空了。

代码实现:

//判断是否为空
bool Priority_Queue_Enpty(pq* p)
{
	assert(p);
	
	return p->size == 0;
}
7、堆的销毁

对数组进行释放,初始化结构体其他成员。

//销毁
void Priority_Queue_Destroyed(pq* p)
{
	assert(p);

	//释放数组
	free(p->arr);
	p->arr = NULL;
	//初始化成员
	p->capacity = 0;
	p->size = 0;
}
8、总代码一览

priority_queue.h

#pragma once
#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h>
#include<assert.h>

typedef int DATATYPE ;
//结构体
typedef struct priority_queues
{
	//数组
	DATATYPE* arr;
	//大小
	int size;
	//容量
	int capacity;
}pq;

//向下调整
void Build_Biles(DATATYPE* arr, int begin, int end);

//向上调整
void AdjustUpwards(DATATYPE* arr, int begin);

//初始化
void IintQueue(pq *p);

//插入元素
void Priority_Queue_Push(pq *p, DATATYPE val);

//弹出数据
bool Priority_Queue_Pop(pq* p);

//返回队头数据
DATATYPE Priority_Queue_Top(pq* p);

//判断是否为空
bool Priority_Queue_Enpty(pq* p);

//返回元素个数
int Priority_Queue_Size(pq* p);

//销毁
void Priority_Queue_Destroyed(pq* p);

priority_queue.c

#include "priority_queue.h"
//初始化
void IintQueue(pq* p)
{
	//断言判断
	assert(p);

	p->arr = NULL;
	//开始下标为0
	p->size = 0;
	//开始我们给一个容量为4
	p->capacity = 4;
	//申请一个空间大小为4
	DATATYPE* tmp = (DATATYPE*)realloc(p->arr, sizeof(DATATYPE) * p->capacity);
	//判断是否申请成功
	if (tmp == NULL)
	{
		printf("申请失败");
		exit(-1);
	}
	p->arr = tmp;
}


//向下调整
void Build_Biles(DATATYPE* arr, int father,int size)
{
	//找左孩子节点和保存数据
	int child = father * 2 + 1;
	int tmp = arr[father];

	while (child < size)
	{
		//找最小那个孩子节点
		if (child + 1 < size && arr[child] > arr[child + 1])
		{
			child++;
		}

		//对比
		if (tmp > arr[child])
		{
			arr[father] = arr[child];
			father = child;
			child= father * 2 + 1;
		}
		else
		{
			break;
		}
	}

	//返回元素
	arr[father] = tmp;
}

//向上调整
void AdjustUpwards(DATATYPE* arr, int child)
{
	int father = 0;
	father = (child - 1) / 2;
	DATATYPE tmp = arr[child];

	while (child >0)
	{
		if (arr[father] <= tmp)
		{
			break;
		}
		else
		{
			arr[child] = arr[father];
			child = father;
			father = (child - 1) / 2;
		}
	}
	arr[child] = tmp;
}

//插入元素
void Priority_Queue_Push(pq* p, DATATYPE val)
{
	assert(p);

	if (p->size == p->capacity)
	{
		DATATYPE* tmp = (DATATYPE*)realloc(p->arr, sizeof(DATATYPE) * p->capacity * 2);
		if (tmp == NULL)
		{
			printf("申请失败");
			exit(-1);
		}
		p->arr = tmp;
		p->capacity = p->capacity * 2;
	}

	p->arr[p->size] = val;
	p->size++;

	//调整
	AdjustUpwards(p->arr, p->size-1);
	
}

//弹出数据
bool Priority_Queue_Pop(pq* p)
{
	assert(p);

	//为空无法删除
	if (p->size == 0)
	{
		return false;
	}
	//只有一个元素时,无需调整
	else if (p->size == 1)
	{
		p->size--;
	}
	//存在多个元素时,需要调整
	else
	{
		p->arr[0] = p->arr[p->size - 1];
		p->size--;
		//调整
		Build_Biles(p->arr, 0, p->size);
	}
	
	return true;
}

//返回数据
DATATYPE Priority_Queue_Top(pq* p)
{
	assert(p);

	if (p->size == 0)
	{
		return -1;
	}

	return p->arr[0];
}

//判断是否为空
bool Priority_Queue_Enpty(pq* p)
{
	return p->size == 0;
}

//返回元素个数
int Priority_Queue_Size(pq* p)
{
	assert(p);
	return p->size;
}

//销毁
void Priority_Queue_Destroyed(pq* p)
{
	assert(p);

	free(p->arr);
	p->arr = NULL;
	p->capacity = 0;
	p->size = 0;
}

以上就是堆的全部内容了,上面实现的小根堆,要是想实现大根堆的话,就将向下向上调整法的大于小于号改一下即可

堆的应用

一、堆排序

实现升序,要是想实现降序改一下向下调整法的大于小于号即可哦

1、原理:

(1)第一步:先将数组调整为大堆。
(2)用我们上面学的向下调整法来将数组调整为大堆,那么从哪里开始向下调整呢?从第一非叶节点(没有左右孩子)的位置开始到0的位置就完成建堆,求第一个非叶节点公式:father =(size-1-1)/2,size是数组大小。
(3)第三步:大堆使最大元素到堆顶,之后将堆顶元素和数组最后一个元素(假设下标为end)交换就可以将最大元素放到最后了,然后重新建堆(除了第一次,其他是从0下标开始调整即可),最后 end--,再将堆顶元素和堆的倒数第二个元素交换,以此类推直到end<=0,这样就完成排序了

(4)图解:
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/f78bcdf02067490b9d45bb4b459d5cbb.png

2、代码实现
//向下调整
void Build_Biles(DATATYPE* arr, int end,int size)
{
	//找左孩子节点和保存数据
	int father = end;
	int child = father * 2 + 1;
	int tmp = arr[father];

	while (child < size)
	{
		//找最小那个孩子节点
		if (child + 1 < size && arr[child] < arr[child + 1])
		{
			child++;
		}

		//对比
		if (tmp < arr[child])
		{
			arr[father] = arr[child];
			father = child;
			child= father * 2 + 1;
		}
		else
		{
			break;
		}
	}

	//返回元素
	arr[father] = tmp;
}
//交换
void Swap(int* a, int* b) {
	int t = *a;
	*a = *b;
	*b = t;
}

void  HeapSort(int* arr, int size) {
	//建堆,size-1-1就是除2(求子树公式反过来用,最后减一是因为我们求的是下标)
	for (int i = (size - 1 - 1) / 2; i >= 0; i--) {
		Build_Biles(arr, i, size);
	}
	int ned = size - 1;
	//最后一个下标位置开始,和下标为0的元素交换,一直交换下去,并且交换一次就调整一次
		//当ned==1之后再进行一次交换就算排好了,此时调整算法不会奏效了
	while (ned >0) {
		Swap(&arr[0], &arr[ned]);
		Build_Biles(arr, 0, ned);//重新调整
		ned--;
		
	}
}
int main()
{
	int arr[] = { 1,5,3,2,4 };
	HeapSort(arr, 5);
	for (int i = 0; i < 5; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

运行结果:
在这里插入图片描述

二、TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素 将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

假设我们要求在n=10000整形元素中求前k=10最大的。

按照上面的思路来:
(1)前k个最大的所以我们建小堆。
(2)先用数组前k个元素去建小堆,然后与后k-n个元素对比,比堆顶元素大的就将堆顶元素与这个元素交换

代码实现:

//上面是小根堆,我就不复制过来了,和上面的堆代码一样,知道接口就行了

void PrintTopK(int* arr, int n, int k)
{

	//初始化小根堆
	pq p;
	IintQueue(&p);

	//前k个插入
	for (int i = 0; i < k; i++)
	{
		Priority_Queue_Push(&p, arr[i]);
	}
	
	//k-n进行对比
	for (int i = k; i < n; i++)
	{
			//存在更大的就先删除堆顶在插入
		  int tmp = Priority_Queue_Top(&p);
			if (arr[i] > tmp)
			{
				Priority_Queue_Pop(&p);
				Priority_Queue_Push(&p, arr[i]);
			}
	}
    
	//打印结果
	while (!Priority_Queue_Enpty(&p))
	{
		int t = Priority_Queue_Top(&p);
		Priority_Queue_Pop(&p);
		printf("%d \n", t);
	}

}

void TestTopk()
{
	int n = 10000;
	int* a = (int*)malloc(sizeof(int) * n);
	srand(time(0));
	//初始话10000个数
	for (size_t i = 0; i < n; ++i)
	{
		a[i] = rand() % 1000000;
	}
	//设置10最大的数
	a[5] = 1000000 + 1;
	a[1231] = 1000000 + 2;
	a[531] = 1000000 + 3;
	a[5121] = 1000000 + 4;
	a[115] = 1000000 + 5;
	a[2335] = 1000000 + 6;
	a[9999] = 1000000 + 7;
	a[76] = 1000000 + 8;
	a[423] = 1000000 + 9;
	a[3144] = 1000000 + 10;
	PrintTopK(a, n, 10);
}
int main()
{
	TestTopk();
	return 0;
}

运行结果:
在这里插入图片描述

堆练习

一、数组中两个元素的最大乘积

1、题目链接:数组中两个元素的最大乘积
2、题目描述:

给你一个整数数组 nums,请你选择数组的两个不同下标 i 和 j,使 (nums[i]-1)*(nums[j]-1) 取得最大值。
请你计算并返回该式的最大值。

3、例子:

示例 1:
输入:nums = [3,4,5,2] 。
输出:12 。
解释:如果选择下标 i=1 和 j=2(下标从 0开始),则可以获得最大值,(nums[1]-1)(nums[2]-1) = (4-1)(5-1) = 3*4 = 12 。

4、思路:

(1)其实这题很简单就是排序然后取最大的两个数即可,但是我们尝试用堆去解决这个问题。
(2)用堆的话我们要构建大根堆,可以将数组中的元素全部插入到堆中,然后取堆顶的元素,然后再删除,再取即可拿到最大的两个元素了。

5、代码实现:



//上面的是堆,下面才是主要部分



int maxProduct(int* nums, int numsSize) {
	//初始化
    pq q;
    IintQueue(&q);
    //将全部元素插入
    for(int i=0;i<numsSize;i++)
    {
        Priority_Queue_Push(&q,nums[i]);
    }
    //取两个元素
    int tmp1=Priority_Queue_Top(&q);
    Priority_Queue_Pop(&q);
    int tmp2=Priority_Queue_Top(&q);
    Priority_Queue_Pop(&q);

    //释放堆
    Priority_Queue_Destroyed(&q);
    
    return (tmp1-1)*(tmp2-1);
}

一、最小数字游戏

1、题目链接:最小数字游戏
2、题目描述:

你有一个下标从 0 开始、长度为 偶数 的整数数组 nums ,同时还有一个空数组 arr 。Alice 和 Bob决定玩一个游戏,游戏中每一轮 Alice 和 Bob 都会各自执行一次操作。游戏规则如下:
每一轮,Alice 先从 nums 中移除一个 最小 元素,然后 Bob 执行同样的操作。 接着,Bob 会将移除的元素添加到数组 arr 中,然后 Alice 也执行同样的操作。 游戏持续进行,直到 nums 变为空。 返回结果数组 arr 。

3、例子:

示例 1:

输入:nums = [5,4,2,3]
输出:[3,2,5,4]
解释:第一轮,Alice 先移除 2 ,然后 Bob 移除 3 。然后Bob 先将 3 添加到 arr 中,接着 Alice 再将 2 添加到 arr 中。于是 arr = [3,2] 。第二轮开始时,nums = [5,4] 。Alice 先移除 4 ,然后 Bob 移除 5 。接着他们都将元素添加到 arr 中,arr变为 [3,2,5,4] 。

4、思路:

(1)这一题也是可以通过排序,然后再取对应的元素进新数组里的,还是一样我们用堆做。
(2)因为是找小的元素先,所以我们建小根堆,再通过建全部元素插入到堆里,每轮取出两个元素,取第一个元素先保存,再删除,接着取第二个元素,保存,再删除,然后将第二个取出的元素放进数组,再将第一个取得元素放进,数组,一直循环这个操作直到堆为空即可。

5、代码实现:


//上面是小根堆,就不写了

int* numberGame(int* nums, int numsSize, int* returnSize) {
    int *arr=(int*)malloc(sizeof(int)*numsSize);

	//初始化对象
    pq q;
    IintQueue(&q);
    //插入
    for(int i=0;i<numsSize;i++)
    {
        Priority_Queue_Push(&q,nums[i]);
    }
    
    //i控制数组下标
    int i=0;
    while(!Priority_Queue_Enpty(&q))
    {
      //每轮取两个数
        int tmp1=Priority_Queue_Top(&q);
        Priority_Queue_Pop(&q);
        int tmp2=Priority_Queue_Top(&q);
        Priority_Queue_Pop(&q);
        arr[i++]=tmp2;
        arr[i++]=tmp1;
    }
    //释放
    Priority_Queue_Destroyed(&q);

    *returnSize=numsSize;
    return arr;
}

结束了喔

最后感谢大家的观看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/442922.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HTML5基础2

drag 可以把拖放事件拆分成4个步骤 设置元素为可拖放。为了使元素可拖动&#xff0c;把 draggable 属性设置为 true 。 <img draggable"true"> 拖动什么。ondragstart 和 setData() const dragestart (ev)>{ev.dataTransfer.setData(play,ev.target.id)} …

深入探索HAProxy:高性能负载均衡器的奥秘

目录 引言 一、HAProxy基础知识 &#xff08;一&#xff09;HAProxy概述 &#xff08;二&#xff09;核心特性 &#xff08;三&#xff09;支持调度算法 二、安装haproxy &#xff08;一&#xff09;下载源码包 &#xff08;二&#xff09;解决依赖环境 &#xff08;三…

BDD - Python Behave log 为每个 Scenario 生成对应的 log 文件

BDD - Python Behave log 为每个 Scenario 生成对应的 log 文件 引言应用 Behave 官网 Log 配置文件项目 SetupFeature 文件steps 文件Log 配置文件environment.py 文件behave.ini 执行结果 直接应用 Python logging 模块方式 1&#xff1a;应用 log 配置文件log 配置文件envir…

根据QQ号获取暗恋的人的全部歌单

文章目录 前言一、成果展示二、后端开发流程三、前后端障碍与难点解决四、待扩展内容五、总结 前言 本人喜欢使用QQ音乐听歌&#xff0c;并且喜欢点击好友栏目观看最近在听&#xff0c;了解暗恋的人最近在听什么歌曲&#xff0c;知己知彼&#xff0c;百战不殆。但是每次都需要…

Goya主题 Wordpress简约时尚类电商模板Woocommerce跨境电商主题优化版

Goya 是一个现代而简约的主题&#xff0c;具有您下一个在线商店的所有必需功能。其美丽而清晰的风格旨在展示您的产品并增加销量。您的客户会喜欢其在所有设备上的简单用户体验。由世界上最灵活的电子商务平台 WooCommerce 提供支持。 主题下载地址&#xff1a;Goya主题优化版…

业务随行简介

定义 业务随行是一种不管用户身处何地、使用哪个IP地址&#xff0c;都可以保证该用户获得相同的网络访问策略的解决方案。 背景 在企业网络中&#xff0c;为实现用户不同的网络访问需求&#xff0c;可以在接入设备上为用户部署不同的网络访问策略。在传统园区网络中&#xf…

b站小土堆pytorch学习记录—— P23-P24 损失函数、反向传播和优化器

文章目录 一、损失函数1.简要介绍2.代码 二、优化器1.简要介绍2.代码 一、损失函数 1.简要介绍 可参考博客&#xff1a; 常见的损失函数总结 损失函数的全面介绍 pytorch学习之十九种损失函数 损失函数&#xff08;Loss Function&#xff09;是用来衡量模型预测输出与实际…

vue结合vue-electron创建应用程序

这里写自定义目录标题 安装electron第一种方式&#xff1a;vue init electron-vue第二种方式&#xff1a;vue add electron-builder 启动electron调试功能&#xff1a;background操作和使用1、覆盖窗口的菜单上下文、右键菜单2、监听关闭事件、阻止默认行为3、创建悬浮窗口4、窗…

office下常见问题总结——(持续更新学习记录中......)

目录 Wordword2019中, 当给选定的汉字设置格式后&#xff0c;其他相同汉字也会自动应用相同的格式?在Word中&#xff0c;当输入数字后加上句点&#xff08;.&#xff09;时会自动被识别为标题,如何关闭功能?如何让当前的word中的样式 ,匹配全局模版中的样式?在word中,为什么…

c++中string的使用!!!(适合初学者 浅显易懂)

我们先初步的认识一下string,string底层其实是一个模版类 typedef basic_string<char> string; 我们先大致的把string的成员函数列举出来 class string { private: char * str; size_t size; size_t capacity; }; 1.string的六大默认函数 1.1 构造函数、拷贝构造 注&am…

悬浮工具球(仿 iphone 辅助触控)

悬浮工具球&#xff08;仿 iphone 辅助触控&#xff09; 兼容移动端 touch 事件点击元素以外位置收起解决鼠标抬起触发元素的点击事件问题 Demo Github <template><divref"FloatingBal"class"floating_ball":class"[dragging, isClick]&q…

AntV L7的符号地图

本案例使用L7库和Mapbox GL JS添加符号地图。 文章目录 1. 引入 CDN 链接2. 引入组件3. 创建地图4. 创建场景5. 添加符号6. 创建点数据7. 创建点图层8. 演示效果9. 代码实现 1. 引入 CDN 链接 <script src"https://unpkg.com/antv/l7"></script> <scr…

会话_过滤器_监听器笔记

一&#xff1a;会话 1&#xff1a;Cookie&#xff1a; cookie是一种客户端会话技术,cookie由服务端产生,它是服务器存放在浏览器的一小份数据,浏览器以后每次访问该服务器的时候都会将这小份数据携带到服务器去。 服务端创建cookie,将cookie放入响应对象中,Tomcat容器将cookie…

python基础9_序列类型

回顾: 什么是变量?,有什么用? 可以变化的量, 就是个容器,多次变化,方便后续使用, 前面介绍了哪些数据类型? bool, str, int, float 用什么函数查看数据的类型? a "hello" print(type(a)) 到了这一步,,我们认识了哪些数据类型呢? int 整型(整数), float…

Vue.js+SpringBoot开发大学计算机课程管理平台

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 实验课程档案模块2.2 实验资源模块2.3 学生实验模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 实验课程档案表3.2.2 实验资源表3.2.3 学生实验表 四、系统展示五、核心代码5.1 一键生成实验5.2 提交实验5.3 批阅实…

【leetcode热题】重排链表

给定一个单链表 L 的头节点 head &#xff0c;单链表 L 表示为&#xff1a; L0 → L1 → … → Ln - 1 → Ln请将其重新排列后变为&#xff1a; L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → … 不能只是单纯的改变节点内部的值&#xff0c;而是需要实际的进行节点交换。 示…

Edge好用的插件

目录 浏览器下载插件 插件推荐 AdGuard 广告拦截器 功能介绍 Global Speed: 视频速度控制 功能介绍 iTab新标签页(免费ChatGPT) 功能介绍 篡改猴&#xff08;强大的浏览器插件&#xff09; 功能介绍 浏览器下载插件 点击浏览器右上角的三个点&#xff0c;选择扩展 …

icp许可证年报入口在哪?icp许可证年报流程详细介绍

近期拥有ICP许可证的企业负责人都会收到各地方通管局下发的年报通知&#xff0c;需要在每年的1-3月份报送年报信息&#xff0c;最晚报送时间是2024年3月31日。 对于刚申请或者刚接触这方面的朋友来说&#xff0c;可能连icp许可证年报入口在哪都不知道&#xff0c;更不用说后面…

【计算机网络】TCP 的三次握手与四次挥手

通常我们进行 HTTP 连接网络的时候会进行 TCP 的三次握手&#xff0c;然后传输数据&#xff0c;之后再释放连接。 TCP 传输如图1所示&#xff1a; 图1 TCP 传输 TCP三次握手的过程如下&#xff1a; 第一次握手&#xff1a;建立连接。客户端发送连接请求报文段&#xff0c;将 …

笔记78:软件包管理工具 apt 详解(包含常用 apt 命令介绍)

一、Ubuntu 的包管理工具 apt 过去&#xff0c;软件通常是从源代码安装的&#xff0c;安装步骤为&#xff1a;​​​​​​ 在Github上下载该软件的源码文件&#xff1b;查看Github上这个软件项目中提供的自述文件&#xff08;通常包含配置脚本或 makefile 文件&#xff09;&a…