论文阅读之Multimodal Chain-of-Thought Reasoning in Language Models

文章目录

  • 简介
  • 摘要
  • 引言
  • 多模态思维链推理的挑战
  • 多模态CoT框架
  • 多模态CoT模型架构细节
    • 编码模块
    • 融合模块
    • 解码模块
  • 实验结果
  • 总结

简介

本文主要对2023一篇论文《Multimodal Chain-of-Thought Reasoning in Language Models》主要内容进行介绍。

摘要

大型语言模型(LLM)通过利用思想链(CoT)提示生成中间推理链作为推断答案的基本原理,在复杂推理方面表现出了令人印象深刻的性能。然而,现有的CoT研究主要集中在语言模态上。这篇文章提出了多模态CoT,将语言(文本)和视觉(图像)模式结合到一个分为两个阶段的框架中,该框架将基本原理生成和答案推理分开。通过这种方式,答案推理可以利用基于多模式信息的更好生成的理由。使用多模CoT,模型在10亿个参数下的性能比以前最先进的LLM(GPT-3.5)高出16个百分点(75.17%→91.68%的准确率),甚至超过了ScienceQA基准的人类表现。

引言

阅读一本没有数字或表格的教科书。通过联合建模不同的数据模式,如视觉、语言和音频,我们的知识获取能力大大增强。大型语言模型(LLM)通过在推断答案之前生成中间推理步骤,在复杂推理中表现出了令人印象深刻的性能。这种有趣的技术被称为思维链推理(CoT)。

然而,现有的与CoT推理相关的研究在很大程度上是孤立在语言模态中的,很少考虑多模态场景。为了在多模态中引出CoT推理,文章提倡多模态CoT范式。

给定不同模态的输入,多模态CoT将多步骤问题分解为中间推理步骤(基本原理),然后推断答案。由于视觉和语言是最流行的模式,我们在这项工作中重点关注这两种模式。
Description
一个示例如图1所示。
通常,有两种方法可以引发多模式CoT推理:
(i)提示LLM
(ii)微调小模型

执行多模式CoT的最直接方法是将不同模态的输入转换为一个模态,并提示LLM执行CoT。例如,可以通过字幕模型提取图像的字幕,然后将字幕与要输入LLM的原始语言连接起来。然而,在字幕制作过程中存在严重的信息丢失;因此,使用字幕(与视觉特征相反)可能会在不同模态的表示空间中缺乏相互协同作用。

为了促进模态之间的交互,另一个潜在的解决方案是通过融合多模态特征来微调较小的语言模型。

由于这种方法允许灵活地调整模型架构以包含多模式特征,在这项工作中研究了微调模型,而不是提示LLM。

我们都知道1000亿参数(100B)下的语言模型往往会产生幻觉推理,误导答案推理。

为了减轻幻觉的挑战,文章提出了多模态CoT,将语言(文本)和视觉(图像)模式结合到一个分为两个阶段的框架中,该框架将原理生成和答案推理分开。通过这种方式,答案推理可以利用基于多模式信息的更好生成的理由。我们的实验是在ScienceQA基准上进行的,这是最新的带有注释推理链的多模式推理基准。实验结果表明,我们的方法比以前的GPT-3.5模型提高了+16%(75.17%→91.68%)。文章的贡献总结如下:
(i) 这项工作是第一次以不同的方式研究CoT推理。

(ii)提出了一个两阶段框架,通过微调语言模型来融合视觉和语言表示,以执行多模式CoT。该模型能够生成信息理性,以便于推断最终答案。

(iii)文章的方法在ScienceQA基准上实现了最先进的新性能,比GPT-3.5的精度高出16%,甚至超过了人类的性能。

多模态思维链推理的挑战

现有研究表明,CoT推理能力可能在一定规模的语言模型中出现,例如超过100B参数的大模型。然而在1B模型中激发这种推理能力仍然是一个悬而未决的挑战,更不用说在多模式场景中了。

这篇文章的重点是在1B左右模型,因为这样可以与常规消费级GPU(例如,32G内存)一起进行微调和部署。接下来将阐述1B模型在CoT推理中失败的原因,并研究如何设计一种有效的方法来克服这一挑战。

下面有个有趣的现象:

在ScienceQA基准上微调了CoT推理的纯文本基准模型。采用UnifiedQA-Base作为主干语言模型。任务为文本生成问题,其中模型将文本信息作为输入,并生成由基本原理和答案组成的输出序列。如图1所示的示例,该模型将问题文本(Q)、上下文文本(C)和多个选项(M)的标记串联作为输入。
为了研究CoT的影响,我们将其与三种变体的性能进行了比较:
(i) 直接预测答案,无CoT(QCM→A)
(ii) 推理,其中答案推理以基本原理为条件(QCM→RA);
(iii) 使用基本原理解释答案推理的解释(QCM→AR)。
Description
令人惊讶的是,我们观察到准确性下降12.54%(80.40%→67.86%),如果模型在回答之前预测理性(QCM→RA)。结果表明,这些理由可能不一定有助于预测正确的答案。

其中的原因可能是模型在获得所需答案之前超过了最大token限制,或者提前停止生成预测。

然而,文章发现生成的输出(RA)的最大长度总是小于400个token,这低于语言模型的长度限制。因此,对理性危害答案推理的原因进行更深入的探讨是值得的。

为了进一步探究上述情况形成的原因,并深入研究原理如何影响答案预测,本文将CoT问题分为两个阶段,即原理生成和答案推理。基本原理生成使用RougeL分数来评估和答案推理使用准确性评估。表3显示了基于两阶段框架的结果。尽管两阶段基线模型在基本原理生成方面获得了91.76的RougeL分数,但答案推理的准确率仅为70.53%。

Description

与表2中的QCM→A(80.40%)相比,结果表明,在两阶段框架中生成的基本原理并不能提高答案的准确性。

Description

接着随机抽样50个错误案例,发现模型倾向于产生幻觉推理,误导答案推理。如图2所示的例子,由于缺乏对视觉内容的参考,模型(左部分Baseline)产生了“一个磁体的南极最接近另一磁体的南极”的幻觉。在错误案例中,此类错误的发生率为64%。

文章推测,这种幻觉现象是由于缺乏执行有效的多模CoT所需的视觉上下文。为了注入视觉信息,一种简单的方法是将配对的图像转换为字幕,然后将字幕附加在两个阶段的输入中。然而,如表3所示,使用字幕只会产生边际性能增益(增加0.59%). 然后,通过将视觉特征纳入语言模型来探索一种先进的技术。具体而言,将配对图像输入到DETR模型中,以提取视觉特征。然后在提供给解码器之前融合视觉特征,使用编码的语言表示。有了视觉特征,基本原理生成的RougeL分数提高到了96.97%(QCM→R) ,这相应地有助于提高84.91%的回答准确率(QCMR→A.有了这些有效的理由,幻觉现象得到了缓解——其中62.5%的幻觉错误已经得到纠正(图3(b))。这表明,视觉特征确实有利于生成有效的理由并有助于准确的答案推断。作为两阶段方法(QCMR→A) 表3中的方法比表2中的所有一阶段方法都获得了更好的性能,在多模态CoT框架中选择了两阶段方法。
Description

多模态CoT框架

基于之前的分析,多模式CoT将语言(文本)和视觉(图像)模式合并到一个两阶段的框架中,以减少幻觉输出,提升模型的效果。

多模式CoT由两个训练阶段组成:
(i) 基本原理生成
(ii) 答案推理

两个阶段共享相同的模型体系结构,但输入X和输出Y不同。
整个过程如图4所示。
Description

在基本原理生成阶段,模型的输入为X,其中X如下:
Description
其中括号中的前者表示第一阶段中的语言输入,后者表示视觉输入,即图像。

X可以看做实例化为多选推理问题的问题、上下文和选项的拼接,如图4所示。目标是学习一个基本原理生成模型R=F(X),其中R是基本原理。

在答案推理阶段,将基本原理R融入到到原始语言输入Description,因此继续构建第二阶段的语言输入:Description其中◦ 表示拼接。然后,我们将更新后的输入Description馈送到答案推理模型,以推断最终答案Description

现在回过头来看图4,应该就比较清晰明了了。

多模态CoT模型架构细节

上面我们已经知道了文章的多模态CoT流程是怎么样的了,接下来将分析其中关键的模型架构细节也就是上文提到的F( ),以便我们能够对多模态CoT有更深入的理解。

F( )可以分为三个模块:编码模块、融合模块、解码模块

编码模块

Description
其中
LanguageEncoder(·)指的就是transformer的encoder部分,输出的就是Transformer编码器中最后一层的隐藏状态。

VisionExtractor(·) 用于将输入图像矢量化为视觉特征,使用的应该是现成的视觉提取模型(DETR),其实应该也是类似transformer的encoder,因为计算机视觉中,也有vision transformer。

融合模块

在编码模块获得到文本和图片的表示后,先进行注意力计算,将文本和图像信息联系起来:
Description
其中Q、K、V分别为Description
然后使用门控融合机制进行特征融合:
Description

其中Description都是可训练的参数。

解码模块

这里就比较简单,使用的就是transformer的decoderDescription作为输入,输出为我们需要的Y

至此,我们对多模态CoT应该有一个比较深入的了解了,关键内容其实就是使用encoder将文本信息和图像信息表示出来,使用门控融合机制进行特征融合,然后预测出我们需要的结果这个过程就是F( )。

所以多模态CoT完整的流程就是先将初始的文本和图像输入F( )得到图片和原始文本融合之后的CoT,然后再使用CoT的结果增强原始文本信息后得到的结果,再和图片信息输入F( )得到我们最终需要的预测结果。此时再去看图4,应该就一目了然了。

实验结果

Description
表4显示了主要结果。Mutimodal CoTLarge比GPT-3.5高16.51%(75.17%→91.68%),并超过人类表现。具体而言,在8个问题类别中,Mutimodal CoT Large的得分为21.37%(67.43%→88.80%)的性能增益。与现有的UnifiedQA和GPT-3.5方法相比,这些方法利用上下文中的图像字幕来提供视觉语义,结果表明使用图像特征更有效。此外,根据表5中的消融研究结果,我们的两阶段框架有助于获得优异的结果。总体而言,结果验证了多模态的有效性以及通过两阶段框架使用1B模型实现CoT推理的潜力。

总结

使用图像信息增强文本CoT,减少模型幻觉,提升模型效果,蛮有意思的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/441974.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Dockerfile的使用,怎样制作镜像

Docker 提供了一种更便捷的方式,叫作 Dockerfile docker build命令用于根据给定的Dockerfile构建Docker镜像。 docker build命令参数: --build-arg,设置构建时的变量 --no-cache,默认false。设置该选项,将不使用Build …

Ubuntu18/20运行ORB-SLAM3

ORB-SLAM3复现(ubuntu18/20) 文章目录 ORB-SLAM3复现(ubuntu18/20)1 坐标系与外参Intrinsic parameters2 内参Intrinsic parameters2.1 相机内参① 针孔模型Pinhole② KannalaBrandt8模型③ Rectified相机 2.2 IMU内参 3 VI标定—外参3.1 Visual calibration3.2 Inertial calib…

继承中 隐藏和重写的区别

隐藏(重定义):在不同作用域中(不同类),函数名相同,当子类对象想要调用这个函数的时候,只能调用到子类中的这个同名函数,父类中的那个被隐藏。子类对象想要调用父类中的那…

S32 Design Studio PE工具配置ADC

工具配置 我这个K1芯片有两个ADC驱动,也就有两个components,点开之后每个components都有四个选项卡converter转换器、channel通道、compare比较器、average求平均。 配置引脚 配置之前,得先配置好引脚,哪个引脚用来采集ADC。 每…

LangChain Experssion Language之CookBook(一)

目录 LangChain Experssion Language简介 CookBook示例大赏 Prompt LLM:正经本分事儿 RAG:检索的时候用上用户自己的数据吧 Multiple chains:玩转chain的叠加合并 Querying a SQL DB:根据用户的问题写SQL检索数据库 Agent…

uniapp使用华为云OBS进行上传

前言:无论是使用华为云还是阿里云,使用其产品的时候必须阅读文档 1、以华为云为例,刚接触此功能肯定是无从下手的情况,那么我们需要思考,我们使用该产品所用到的文档是什么 2、我们要使用obs 文件上传,肯…

iOS-系统弹窗调用

代码: UIAlertController *alertViewController [UIAlertController alertControllerWithTitle:"请选择方式" message:nil preferredStyle:UIAlertControllerStyleActionSheet];// style 为 sheet UIAlertAction *cancle [UIAlertAction actionWithTit…

Docker基础教程 - 9 常用容器部署-Tomcat

更好的阅读体验:点这里 ( www.doubibiji.com ) 9 常用容器部署-Tomcat 下面介绍一下常用容器的部署。可以先简单了解下,用到再来详细查看。 在 Docker 中部署 Tomcat 容器。 9.1 搜索镜像 首先搜索镜像,命令&…

来说说看到的求职路上可以提高的地方——简历

要进行求职的时候应该遇到的第一件事情就是简历。 随着看到的简历越来越多,也发现了一些问题,来开个帖子来说说这些问题。 格式 让参加面试的人最头疼的地方就是简历格式没有空格。 最近发现好多人的简历格式上都不空格,很多内容完全都在…

植物病虫害:YOLO玉米病虫害识别数据集

玉米病虫害识别数据集:玉米枯萎病,玉米灰斑病,玉米锈病叶,粘虫幼虫,玉米条斑病,黄二化螟,黄二化螟幼虫7类,yolo标注完整,3900多张图像,全部原始数据&#xff…

el-table-column嵌套el-form-item不能进行校验问题解决

项目为vue3elementPlus开发的项目 业务要求:table表格展示数据,其中有一行是ip地址可展示可修改,此处要求增加自定义校验规则 先看一下效果: 此处先描述一下,问题出在了哪里,我将el-table的data,使用一个…

LabVIEW质谱仪开发与升级

LabVIEW质谱仪开发与升级 随着科技的发展和实验要求的提高,传统基于VB的质谱仪系统已经无法满足当前的高精度和高效率需求。这些系统通常存在着功能不全和操作复杂的问题,影响了科研和生产的进度。为了解决这些问题,开发了一套基于LabVIEW开…

考研复习C语言初阶(3)

目录 一.函数是什么? 二.C语言中函数的分类 2.1库函数 2.2自定义函数 三.函数的参数 3.1实际参数(实参) 3.2 形式参数(形参) 四.函数的调用 4.1 传值调用 4.2 传址调用 五. 函数的嵌套调用和链式访问 5.1 嵌套调用 5…

Nginx 基础知识及实例解析

一、简介 Nginx (“engine x”) 是一个高性能的 HTTP 和反向代理服务器,特点是占有内存少,并发能力强,目前使用最多的就是负载均衡。Nginx 可以作为静态页面的 web 服务器,同时还支持 CGI 协议的动态语言,比如 perl、…

探索考古文字场景,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建文本考古场景下的甲骨文字符图像检测识别系统

甲骨文是一种非常历史悠久的古老文字,在前面我们基本上很少有涉及这块的内容,最近正好在做文字相关的项目开发研究,就想着基于甲骨文的场景来开发对应的检测识别系统,在前文中我们基于YOLOv7开发构建了在仿真数据实验场景下的目标…

Mamba-minimal Mamba的最小限度实现 (一)

文章目录 参数和数据尺寸约定class MambaBlockdef forwarddef __ int__def ssmdef selective_scan johnma2006/mamba-minimal: Simple, minimal implementation of the Mamba SSM in one file of PyTorch. (github.com) manba的简单最小限度实现,和原始论文实现stat…

智能音箱技术解析

目录 前言智能音箱执行步骤解析1.1 探测唤醒词或触发词1.2 语音识别1.3 意图识别1.4 执行指令 2 典型的智能音箱2.1 百度小度音响2.2 小米小爱同学2.3 苹果 HomePod 3 功能应用举例3.1 设置计时器3.2 播放音乐 结语 前言 智能音箱已经成为日常生活中不可或缺的一部分&#xff…

亚信安慧AntDB:为数据安全和稳定而生

AntDB充分考虑了用户的需求,将用户体验置于优先位置,通过深入分析用户的使用情况,对数据库的性能和功能进行了全方位的优化。无论是对于小规模应用还是大规模企业级系统,AntDB都能够提供稳定高效的数据库服务,满足不同…

[BUG] docker运行Java程序时配置代理-Dhttp.proxyHost后启动报错

[BUG] docker运行Java程序时配置代理-Dhttp.proxyHost后启动报错 bug现象描述 版本:2.0.4(客户端和服务端都是) 环境:私有云环境,只有少量跳板机器可以访问公网,其他机器均通过配置代理方式访问公网 bug现…

新一代 Git 工具,AI 赋能!深度集成、简化操作 | 开源日报 No.194

gitbutlerapp/gitbutler Stars: 7.2k License: NOASSERTION gitbutler 是一个基于 Git 的版本控制客户端。旨在为现代工作流程构建一个全新的 Git 分支管理工具。 虚拟分支:可以同时在多个分支上工作,而无需不断切换分支简化提交管理:通过拖…