opencv-20 深入理解HSV 色彩空间(通过指定,标记颜色等来拓展ROI区域)

RGB 色彩空间是一种被广泛接受的色彩空间,但是该色彩空间过于抽象,我们不能够直接通过其值感知具体的色彩。
我们更习惯使用直观的方式来感知颜色,HSV 色彩空间提供了这样 的方式。
通过 HSV色彩空间,我们能够更加方便地通过色调、饱和度和亮度来感知颜色。 其实,除了 HSV 色彩空间,我们讨论的其他大多数色彩空间都不方便人们对颜色进行理解和解释。例如,现实中我们根本不可能用每种颜料的百分比(RGB
色彩空间)来形容一件衣服的颜色。

HSV 色彩空间从心理学和视觉的角度出发,提出人眼的色彩知觉主要包含三要素:
 H:色调(Hue,也称为色相)。
 S:饱和度(Saturation)。
 V:亮度(Value)。

1.色调H

在 HSV 色彩空间中,色调 H 的取值范围是[0,360]。8 位图像内每个像素点所能表示的灰度级有 28=256 个,所以在 8 位图像内表示 HSV 图像时,要把色调的角度值映射到[0,255]范围内。

在 OpenCV 中,可以直接把色调的角度值除以 2,得到[0,180]之间的值,以适应 8 位二进制(256 个灰度级)的存储和表示范围。

在 HSV 空间中,色调值为 0 表示红色,色调值为 300 表示品红色,具体如表 4-3 所示。

在这里插入图片描述
根据上述分析可知,每个色调值对应一个指定的色彩,而与饱和度和亮度无关。
在 OpenCV中,将色调值除以 2 之后,会得到如表 4-4 所示的色调值与对应的颜色。

在这里插入图片描述
确定值范围后,就可以直接在图像的 H 通道内查找对应的值,从而找到特定的颜色。
例如,在 HSV 图像中,H 通道内值为 120 的像素点对应蓝色。查找 H 通道内值为 120 的像素点,找到的就是蓝色像素点。

在上述基础上,通过分析各种不同对象对应的 HSV 值,便可以查找不同的对象。

例如,通过分析得到肤色的 HSV 值,就可以直接在图像内根据肤色的 HSV 值来查找人脸(等皮肤)区域

2.饱和度S

饱和度值的范围是[0,1],所以针对饱和度,需要说明以下问题:

 灰度颜色所包含的 R、G、B 的成分是相等的,相当于一种极不饱和的颜色。所以,灰度颜色的饱和度值是 0。

 作为灰度图像显示时,较亮区域对应的颜色具有较高的饱和度。

 如果颜色的饱和度很低,那么它计算所得色调就不可靠。

19 节介绍 cv2.cvtColor()函数时,进行色彩空间转换后,为了适应 8 位图的256 个像素级,需要将新色彩空间内的数值映射到[0,255]范围内。所以,同样要将饱和度 S 的值从[0,1]范围映射到[0,255]范围内。

3亮度V
亮度的范围与饱和度的范围一致,都是[0,1]。同样,亮度值在
OpenCV 内也将值映射到[0,255]范围内。

亮度值越大,图像越亮;亮度值越低,图像越暗。当亮度值为 0 时,图像是纯黑色

获取指定颜色

可以通过多种方式获取 RGB 色彩空间的颜色值在 HSV 色彩空间内所对应的值。
例如,可以通过图像编辑软件或者在线网站获取 RGB 值所对应的 HSV 值。

需要注意,在从 RGB/BGR 色彩空间转换到 HSV 色彩空间时,OpenCV 为了满足 8 位图的要求,对 HSV 空间的值进行了映射处理。所以,通过软件或者网站获取的 HSV 值还需要被进一步映射,才能与 OpenCV 中的 HSV 值一致。

OpenCV 中,测试 RGB 色彩空间中不同颜色的值转换到 HSV 色彩空间后的对应值。

为了方便理解,这里分别对蓝色、绿色、红色的单个像素点进行测试。
首先,使用 np.zeros([1,1,3],dtype=np.uint8)来生成一幅仅有一个像素点的图像(数组)。

接下来,通过对其中的通道分量赋值,将其设定为指定的颜色。例如:
 语句 imgBlue[0,0,0]=255 可以将该像素点的第 0 个通道(即 B 通道)的值设置为 255,即将该点的颜色指定为蓝色。

 语句 imgGreen[0,0,1]=255 可以将该像素点的第 1 个通道(即 G 通道)的值设置为 255,
即将该点的颜色指定为绿色。
 语句 imgRed[0,0,2]=255 可以将该像素点的第 2 个通道(即 R 通道)的值设置为 255,
即将该点的颜色指定为红色。

然后,可以通过语句 cv2.cvtColor(Blue,cv2.COLOR_BGR2HSV)将 Blue 从 BGR 色彩空间转换到 HSV 色彩空间。

最后,通过打印 HSV 色彩空间内的像素值,观察转换情况。
在本例中,对蓝色、绿色、红色三种不同的颜色分别进行转换,将它们从 BGR 色彩空间
转换到 HSV 色彩空间,并观察转换后所得到的 HSV 空间的对应值。

根据上面的流程用代码来验证下,代码如下:

import cv2
import numpy as np
#=========测试一下 OpenCV 中蓝色的 HSV 模式值=============
imgBlue=np.zeros([1,1,3],dtype=np.uint8)
#将 BGR 色彩空间中的蓝色的值赋值给 imgBlue
imgBlue[0,0,0]=255
Blue=imgBlue
#将 BGR 色彩空间中的蓝色的值转换为 HSV 色彩空间的值
BlueHSV=cv2.cvtColor(Blue,cv2.COLOR_BGR2HSV)
print("Blue=\n",Blue)
print("BlueHSV=\n",BlueHSV)
#=========测试一下 OpenCV 中绿色的 HSV 模式值=============
imgGreen=np.zeros([1,1,3],dtype=np.uint8)
imgGreen[0,0,1]=255
Green=imgGreen
GreenHSV=cv2.cvtColor(Green,cv2.COLOR_BGR2HSV)
print("Green=\n",Green)
print("GreenHSV=\n",GreenHSV)
#=========测试一下 OpenCV 中红色的 HSV 模式值=============
imgRed=np.zeros([1,1,3],dtype=np.uint8)
imgRed[0,0,2]=255
Red=imgRed
RedHSV=cv2.cvtColor(Red,cv2.COLOR_BGR2HSV)
print("Red=\n",Red)
print("RedHSV=\n",RedHSV)

运行结果

Blue=
 [[[255   0   0]]]
BlueHSV=
 [[[120 255 255]]]
Green=
 [[[  0 255   0]]]
GreenHSV=
 [[[ 60 255 255]]]
Red=
 [[[  0   0 255]]]
RedHSV=
 [[[  0 255 255]]]

标记指定颜色

HSV 色彩空间中,H 通道(饱和度 Hue 通道)对应不同的颜色。或者换个角度理解,颜色的差异主要体现在 H 通道值的不同上。所以,通过对 H 通道值进行筛选,便能够筛选出特定的颜色。

例如,在一幅 HSV 图像中,如果通过控制仅仅将 H 通道内值为 240(在 OpenCV内被调整为 120)的像素显示出来,那么图像中就会仅仅显示蓝色部分。
本节将首先通过例题展示一些实现上的细节问题,然后通过具体例题展示如何将图像内的特定颜色标记出来,即将一幅图像内的其他颜色屏蔽,仅仅将特定颜色显示出来。

通过opencv.inRange()函数锁定特定值

OpenCV 中通过函数 cv2.inRange()来判断图像内像素点的像素值是否在指定的范围内,其语法格式为:

dst = cv2.inRange( src, lowerb, upperb )

式中:
 dst 表示输出结果,大小和 src 一致。
 src 表示要检查的数组或图像。
 lowerb 表示范围下界。
 upperb 表示范围上界。

返回值 dst 与 src 等大小,其值取决于 src 中对应位置上的值是否处于区间[lowerb,upperb]
内:
 如果 src 值处于该指定区间内,则 dst 中对应位置上的值为 255。
 如果 src 值不处于该指定区间内,则 dst 中对应位置上的值为 0。

实验验证:分别提取 OpenCV 的 logo 图像内的红色、绿色、蓝色。

在实际提取颜色时,往往不是提取一个特定的值,而是提取一个颜色区间。
例如,在 OpenCV 中的 HSV 模式内,蓝色在 H 通道内的值是 120。在提取蓝色时,通常将“蓝色值 120”附近的一个区间的值作为提取范围。该区间的半径通常为 10 左右,例如通常提取
[120−10,120+10]范围内的值来指定蓝色。
相比之下,HSV 模式中 S 通道、V 通道的值的取值范围一般是[100,255]。这主要是因为,当饱和度和亮度太低时,计算出来的色调可能就不可靠了。
根据上述分析,各种颜色的 HSV 区间值分布在[H−10,100,100]和[H+10,255,255]之间。因此,各种颜色值的范围为:

 蓝色:值分布在[110,100,100]和[130,255,255]之间。
 绿色:值分布在[50,100,100]和[70,255,255]之间。
 红色:值分布在[0,100,100]和[10,255,255]之间。

根据前述例题的相关介绍,首先利用函数 cv2.inRange()查找指定颜色区域,然后利用基于掩码的按位与运算将指定颜色提取出来。

实验原图:
在这里插入图片描述
代码如下:

import cv2
import numpy as np
opencv=cv2.imread("opencv.jpg")
hsv = cv2.cvtColor(opencv, cv2.COLOR_BGR2HSV)
cv2.imshow('opencv',opencv)
#=============指定蓝色值的范围=============
minBlue = np.array([110,50,50])
maxBlue = np.array([130,255,255])
#确定蓝色区域
mask = cv2.inRange(hsv, minBlue, maxBlue)
#通过掩码控制的按位与运算,锁定蓝色区域
blue = cv2.bitwise_and(opencv,opencv, mask= mask)
cv2.imshow('blue',blue)
#=============指定绿色值的范围=============
minGreen = np.array([50,50,50])
maxGreen = np.array([70,255,255])
#确定绿色区域
mask = cv2.inRange(hsv, minGreen, maxGreen)
#通过掩码控制的按位与运算,锁定绿色区域
green = cv2.bitwise_and(opencv,opencv, mask= mask)
cv2.imshow('green',green)
#=============指定红色值的范围=============
minRed = np.array([0,50,50])
maxRed = np.array([30,255,255])
#确定红色区域
mask = cv2.inRange(hsv, minRed, maxRed)
#通过掩码控制的按位与运算,锁定红色区域
red= cv2.bitwise_and(opencv,opencv, mask= mask)
cv2.imshow('red',red)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如下,分别提取了不同的颜色出来

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/44071.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Keil系列教程08_Configuration(二)

1写在前面 本文接着上一篇文章《Keil系列教程07_Configuration(一)》讲述的工程目标选项的后三项配置:Shortcut Keys快捷键、Text Completion代码完形、Other其他。 这后面三部分内容在该系列教程其它也会牵涉,也是一些常用、重要…

idea中常用的快捷键

快捷键: 1.快速生成main方法 main/psvm public static void main(String[] args) {} 2.快速复制当前行的代码: ctrld 3.快速捕获异常: altctrlt 4.快速打印结果: sout/soutv System.out.println(s); System.out.println("s " s); 5.自动生成对象的返回值…

tinkerCAD案例:8.Cylinder Earrings 圆筒耳环

tinkerCAD案例:8.Cylinder Earrings 圆筒耳环 In this lesson you will learn how to create earrings using cylinder shapes. So let’s get started! 在本课中,您将学习如何使用圆柱形制作耳环。所以让我们开始吧! 说明 Drag a Cylinder …

el-Cascader 中div上绑定keyDown事件

keydown,keyup,keypress 事件默认是给页面上可以聚焦的元素绑定键盘事件,例如input输入框,点击输入框即代表聚焦在该元素上。那么想要给div或者其他不能聚焦的元素上使用键盘事件怎么处理呢?这里用到tabindex属性。 …

SWF格式视频怎么转换成AVI格式?简单的转换方法分享

当你想要在不同的设备上播放视频时,将SWF格式视频转换成AVI格式是非常有用的。因为SWF格式通常只能在特定的软件或网页上播放,而AVI格式则可以在更广泛的设备上播放,包括智能手机,平板电脑和电视机等。那么我们怎么将SWF转换成AVI…

关于Nginx的 location 配置各种情况转换后的样子记录

Nginx location 配置要代理的地址测试URL代理后的URL举例编号/test01http://127.0.0.1:8080/test01/abc/test/test01/abc/test01/test02http://127.0.0.1:8080//test02/abc/test//abc/test02/test03/http://127.0.0.1:8080/test03/abc/test/test03/abc/test03/test04/http://12…

Drools用户手册翻译——第四章 Drools规则引擎(六)执行控制

主要讲了规则匹配时的优先级设置的方式。 甩锅声明:本人英语一般,翻译只是为了做个笔记,所以有翻译错误的地方,错就错了,如果你想给我纠正,就给我留言,我会改过来,如果懒得理我&…

css终极方案PostCSS

一见如故 原理 所有的css框架都在一样的事,那就是由一个css生成一个新的css,那么postcss就来做了一个抽离: 1、将原有的css解析成抽象语法树 2、中间经过若干个插件 3、重新文本化,形成新的css postcss.config.js module.expor…

Spring Cloud 负载平衡的意义什么?

目录 一、什么是负载平衡 二、为什么需要负载平衡 三、Spring Cloud 如何实现负载平衡 四、负载平衡的nginx配置 一、什么是负载平衡 负载平衡是指将网络流量在多个服务器之间分布,以达到提高系统性能、增强可靠性和提供更好用户体验的目的。在负载平衡的架构中…

32位Cortex-M4 MCU:LPC54607J256ET180E、LPC54605J512BD100K 180MHz嵌入式微控制器

LPC546xx 32 位微控制器(MCU) 具有丰富的外设集、极低的功耗和增强的调试功能。 LPC546xx MCU系列采用ARM Cortex-M4内核,可提供以太网支持,并设有一个TFT LCD控制器和两个CAN FD模块。LPC546xx MCU旨在提高灵活性和性能可扩展性,可提供高达1…

Java - 泛型

泛型 1、 当我们ArrayList表示存放到ArrayList集合中的元素是Dog类型时 2、如果编译器发现添加的类型&#xff0c;不满足要求&#xff0c;就会报错。 3、遍历的时候直接取出Dog类型&#xff0c;而不是Object。 ArrayList<Week> weeks1 new ArrayList<>();好处…

科研院所用泛微搭建信创办公平台,统一办公,业务融合,安全便捷

国家全面推动重要领域的信创改造工作&#xff0c;要求到2027年底&#xff0c;对综合办公、经营管理、生产运营等系统实现“应替尽替、能替则替”。 科研机构作为智力、知识密集型机构&#xff0c;承载着大量数据、信息资产&#xff0c;数字化程度高&#xff0c;业务系统多样&a…

SpringBoot项目修改Tomcat版本号

SpringBoot项目修改Tomcat版本号 前言如果项目是以jar包形式打包部署如果项目是以war包形式打包部署示例 仰天大笑出门去&#xff0c;我辈岂是蓬蒿人 前言 Springboot项目,默认是使用内嵌Tomcat servlet容器形式打包部署。关于怎么修改默认的版本号&#xff0c;捣鼓了好久终于…

NLP(六十)Baichuan-13B-Chat模型使用体验

2023年7月11日&#xff0c;百川智能正式发布参数量130亿的通用大语言模型Baichuan-13B-Base、对话模型Baichuan-13B-Chat及其INT4/INT8两个量化版本。   本文将介绍大模型BaiChuan-13B-Chat的使用体验&#xff0c;其HuggingFace网址为&#xff1a;https://huggingface.co/bai…

8. Vmvare中重新分配Linux系统的分区空间大小

1. 说明 一般情况下&#xff0c;在使用Vmvare虚拟机创建配置Linux系统时&#xff0c;默认将系统的内存设置为4GB&#xff0c;硬盘大小设置为40GB&#xff0c;但随着空间利用的越来越多&#xff0c;内存会出现不够使用的情况&#xff0c;此时需要重新分配空间大小&#xff0c;具…

一起学数据结构(1)——复杂度

目录 1. 时间复杂度&#xff1a; 1.1 时间复杂度的概念&#xff1a; 1.2 时间复杂度的表示及计算&#xff1a; 1.3 较为复杂的时间复杂度的计算&#xff1a; 2. 空间复杂度&#xff1a; 2.1 空间复杂度的概念&#xff1a; 2.2 空间复杂度的计算&#xff1a; 1. 时间复杂度…

【C++进阶之路】适配器、反向迭代器、仿函数

文章目录 前言一、适配器①模拟实现栈②模拟实现对列 二、反向迭代器三、仿函数总结 前言 我们先来笼统的介绍一下今天的三个内容。 适配器——简单的理解就是复用&#xff0c;用已经实现的轮子&#xff0c;来继续实现某种功能。 反向迭代器——原理很简单&#xff0c;就是对…

Maven发布中央仓库始终报403

把域名 oss.sonatype.org 全部替换为&#xff1a;s01.oss.sonatype.org

Chatgpt Web API 创建对话,免费,不计token数量,模仿网页提交对话

Chatgpt API 是收费的&#xff0c;按token使用量计费 Chatgpt Web API 免费的&#xff0c;只要有账号就可以使用。 curl https://chat.openai.com/backend-api/conversation \-H authority: chat.openai.com \-H accept: text/event-stream \-H accept-language: zh-CN,zh;q…

52.弱集合 WeakSet

WeakSet与Set相似&#xff0c;Set的方法在WeakSet中基本都能使用 WeakSet只能放对象 WeakSet不能被遍历 目录 1 创建WeakSet 2 弱集合的指向问题 1 创建WeakSet 直接在创建的时候把对象放进去是不行的 你需要用add()方法才可以放进去 2 弱集合的指向问题 当你把obj加…