图像处理与视觉感知---期末复习重点(2)

文章目录

  • 一、空间域图像增强
    • 1.1 图像增强
    • 1.2 几种变换
  • 二、直方图
    • 2.1 直方图定义
    • 2.2 直方图均衡化
    • 2.3 离散情况
    • 2.4 例子
    • 2.5 直方图匹配
    • 2.6 例子
    • 2.7 一道例题
  • 三、空间滤波器
    • 3.1 定义
    • 3.2 例子
  • 四、平滑空间滤波器
    • 4.1 作用与分类
    • 4.2 线性滤波器
  • 五、统计排序滤波器
    • 5.1 定义与分类
    • 5.2 计算公式


一、空间域图像增强

1.1 图像增强

 1. 图像增强:是一类基本的图像处理技术,其目的是对图像进行加工,以得到对视觉解释来说视觉效果“更好”、或对机器感知效果来说“更有用”的图像。

 2. 图像增强分为两类:(1) 空间域增强:对图像的像素直接处理。(2) 频域增强:对图像经傅里叶变换后的频谱成分进行处理,然后逆傅里叶变换获得所需的图像。

 3. 空间域增强: g ( x , y ) = T [ f ( x , y ) ] g(x,y)=T[f(x,y)] g(x,y)=T[f(x,y)]
f ( x , y ) f(x,y) f(x,y) 是原图像; g ( x , y ) g(x,y) g(x,y) 是处理后的图像; T T T 是作用于 f f f 的操作,定义在 ( x , y ) (x,y) (x,y) 的邻域。

 4. 空间域增强的简化形式: s = T ( r ) s=T(r) s=T(r)
r r r f ( x , y ) f(x,y) f(x,y) 在任意点 ( x , y ) (x,y) (x,y) 的灰度级; s s s g ( x , y ) g(x,y) g(x,y) 在任意点 ( x , y ) (x,y) (x,y) 的灰度级。

1.2 几种变换

 1. 反转变换和对数变换:

在这里插入图片描述

 2. 幂变换:

在这里插入图片描述

 3. 5灰度级切片

在这里插入图片描述

 4. 6位平面切片

在这里插入图片描述

二、直方图

2.1 直方图定义

 1. 定义(1):
 一个灰度级在范围 [ 0 , L − 1 ] [0,L-1] [0,L1] 的数字图像的直方图是一个离散函数。 h ( r k ) = n k h(r_k)=n_k h(rk)=nk;其中 n k n_k nk 是图像中灰度级为 r k r_k rk 的像素个数, r k r_k rk 是第 k k k 个灰度级, k = 0 , 1 , 2 , . . . , L − 1 k=0,1,2,...,L-1 k=0,1,2,...,L1
 由于 r k r_k rk 的增量是1,直方图可表示为: p ( k ) = n k p(k)=n_k p(k)=nk,即图像中不同灰度级像素出现的次数。

 2. 定义(2):
 一个灰度级在范围 [ 0 , L − 1 ] [0,L-1] [0,L1] 的数字图像的直方图是一个离散函数。 p ( r k ) = n k / n p(r_k)=n_k /n p(rk)=nk/n n n n 是图像的像素总数, n k n_k nk 是图像中灰度级为 r k r_k rk 的像素个数, r k r_k rk 是第 k k k 个灰度级, k = 0 , 1 , 2 , . . . , L − 1 k=0,1,2,...,L-1 k=0,1,2,...,L1

 3. 两种图像直方图定义的比较:

在这里插入图片描述

 4. 一个例子:

在这里插入图片描述

2.2 直方图均衡化

 1. 直方图均衡化思想:就是把一幅图像变换成具有均匀分布的概率密度函数的新图像过程。

在这里插入图片描述

 2. 先讨论连续变化图像的均衡化问题。在一幅图像中,可以认为灰度级是一个在 [ 0 , L − 1 ] [0,L-1] [0,L1] 区间取值的随机变量 R R R。设 r r r s s s 分别表示归一化了的原图像灰度级和经直方图均衡后的图像灰度级,即: ≤ r , s ≤ 1 ; s = T ( r ) ; ≤r,s≤1;s=T(r); r,s1s=T(r) T ( r ) T(r) T(r) 作为变换函数。
 在 [ 0 , 1 ] [0,1] [0,1] 区间内的任一个 r r r 值,都可产生一个 s s s 值,如下图所示:

在这里插入图片描述

 3. T ( r ) T(r) T(r) 作为变换函数,满足下列条件:① 在 0 ≤ r ≤ 1 0≤r≤1 0r1 内为单调递增函数,保证灰度级从黑到白的次序不变。 ② 在 0 ≤ r ≤ 1 0≤r≤1 0r1 内有 0 ≤ T ( r ) ≤ 1 0≤T(r)≤1 0T(r)1,确保映射后的像素灰度级在允许的范围内。
 反变换关系为: r = T − 1 ( s ) r=T^{-1}(s) r=T1(s) T − 1 ( s ) T^{-1}(s) T1(s) s s s 同样满足上述两个条件。

 4. 计算公式:

在这里插入图片描述

在这里插入图片描述

 5. 直方图均衡不一定总是好的。缺点:(1) 变换后图像的灰度级减少,某些细节消失。(2) 某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

2.3 离散情况

 1. 离散情况下直方图均衡化的算法步骤:

 (1) 列出原始图像的灰度级 r j r_j rj j = 0 , 1 , 2 , . . . , L − 1 j=0,1,2,...,L-1 j=0,1,2,...,L1

 (2) 统计各灰度级的像素数目 n j n_j nj j = 0 , 1 , . . . , L − 1 j=0,1,...,L-1 j=0,1,...,L1

 (3) 计算原始图像直方图各灰度级的频率 P R ( r j ) = n j / n P_R(r_j)=n_j/n PR(rj)=nj/n j = 0 , 1 , . . . , L − 1 j=0,1,...,L-1 j=0,1,...,L1

 (4) 计算累计分布函数: S k = ∑ p R ( r j ) S_k=∑p_R(r_j) Sk=pR(rj) j = 0 , 1 , . . . , k , . . . , L − 1 j=0,1,...,k,...,L-1 j=0,1,...,k,...,L1

 (5) 把新的灰度级按就近原则转化为原灰度级: g k = I N T [ ( L − 1 ) s k + 0.5 ] g_k=INT[(L-1)s_k+0.5] gk=INT[(L1)sk+0.5],其中 I N T INT INT 为取整

 (6) 用原图像 r k r_k rk g k g_k gk 的映射关系,修改原图像灰度级,获得输出图像,其直方图为近似均匀分布

2.4 例子

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.5 直方图匹配

 1. 直方图匹配是指生成具有指定直方图的已处理图像。

 2. 离散情况下直方图匹配的过程:

在这里插入图片描述

2.6 例子

在这里插入图片描述

在这里插入图片描述

2.7 一道例题

在这里插入图片描述

在这里插入图片描述

三、空间滤波器

3.1 定义

在这里插入图片描述

3.2 例子

在这里插入图片描述

在这里插入图片描述

四、平滑空间滤波器

4.1 作用与分类

 1. 平滑空间滤波器的作用:(1) 模糊处理:去除图像中一些不重要的细节。 (2) 减小噪声。

 2. 平滑空间滤波器的分类:(1) 线性滤波器:均值滤波器。 (2) 非线性滤波器:①最大值滤波器 ②中值滤波器 ③最小值滤波器

4.2 线性滤波器

 1. 线性滤波器其特点是对图像中像素的计算是线性的。具体来说,这种滤波器通过对图像中的每个像素及其邻域进行线性运算来得出新的像素值。这些线性运算可以包括平滑加权求和、卷积等。

 2. 作用:(1) 减小图像灰度的 “尖锐” 变化,减小噪声。(2) 由于图像边缘是由灰度尖锐变化引起的,所以也存在边缘模糊问题。

 3. 计算公式:

在这里插入图片描述

五、统计排序滤波器

5.1 定义与分类

 1. 统计排序滤波器:是一种非线性滤波器,基于滤波器所在图像区域中像素的排序,由排序结果决定的值代替中心像素的值。

 2. 分类:(1) 中值滤波器:用像素领域内的中间值代替该像素。 (2) 最大值滤波器:用像素领域内的最大值代替该像素。 (3) 最小值滤波器:用像素领域内的最小值代替该像素。

5.2 计算公式

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/438667.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CleanMyMac X4.14.7永久免费Mac电脑清理和优化软件

CleanMyMac X 是一款功能强大的 Mac 清理和优化软件,适合以下几类人群使用: 需要定期清理和优化 Mac 的用户:随着时间的推移,Mac 设备上可能会积累大量的无用文件、缓存和垃圾,导致系统运行缓慢。CleanMyMac X 的智能扫…

谷歌开源的LLM大模型 Gemma 简介

相关链接: Hugging face模型下载地址:https://huggingface.co/google/gemma-7bGithub地址:https://github.com/google/gemma_pytorch论文地址:https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf官方博客&…

傅里叶变换pytorch使用

参考视频:1 傅里叶变换原理_哔哩哔哩_bilibili 傅里叶得到低频、高频信息,针对低频、高频处理能够实现不同的目的。 傅里叶过程是可逆的,图像经过傅里叶变换、逆傅里叶变换后,能够恢复到原始图像 在频域对图像进行处理&#xff0c…

如何建立一个电商网站呢?商城完善建站解决方案

如何建立一个电子商务网站? 电子商务网站是虚拟商店,用户可以不受时间和地点的限制在线购物。 网上商城的兴起,扩大了消费市场空间。 一个完善的网站建设解决方案对于商城来说是必不可少的。 以下是为您提供的一些网站建设建议: …

[uni-app ] createAnimation锚点旋转 及 二次失效问题处理

记录一下: 锚点定位到左下角, 旋转动画 必须沿Z轴,转动 但是,此时会出现 后续动画在微信小程序失效问题 解决: 清空 this.animationData

LiveNVR监控流媒体Onvif/RTSP功能-支持云端录像监控视频集中存储录像回看录像计划配置NVR硬件设备录像回看

LiveNVR支持云端录像监控视频集中存储录像回看录像计划配置NVR硬件设备录像回看 1、流媒体服务软件2、录像回看3、查看录像3.1、时间轴视图3.2、列表视图 4、如何分享时间轴录像回看?5、iframe集成示例7、录像计划7、相关问题7.1、录像存储位置如何配置?…

Spring MVC 全局异常处理器

如果不加以异常处理,错误信息肯定会抛在浏览器页面上,这样很不友好,所以必须进行异常处理。 1.异常处理思路 系统的dao、service、controller出现都通过throws Exception向上抛出,最后由springmvc前端控制器交由异常处理器进行异…

Django高级之-缓存

Django高级之-缓存 一 缓存介绍 在动态网站中,用户所有的请求,服务器都会去数据库中进行相应的增,删,查,改,渲染模板,执行业务逻辑,最后生成用户看到的页面. 当一个网站的用户访问量很大的时候,每一次的的后台操作,都会消耗很多的服务端资源,所以必须使用缓存来减轻后端服务…

Redis的淘汰策略

手写一个LRU&#xff1a; import java.util.LinkedHashMap; import java.util.Map;public class LRUCache<K, V> extends LinkedHashMap<K, V> {private final int cacheSize;public LRUCache(int cacheSize) {// 设置访问顺序为访问顺序&#xff0c;即最近访问的…

Vivado使用记录(未完待续)

一、Zynq开发流程 二、软件安装 三、软件使用 字体大小修改&#xff1a;Setting、Font 四、Vivado基本开发流程 1、创建工程 Quick Start 组包含有 Create Project&#xff08;创建工程&#xff09;、 Open Project&#xff08;打开工程&#xff09;、 Open Example Project&…

无纸化电子sop系统帮助企业降低成本,提高目视化管理

无纸化电子SOP系统是一种基于数字化技术的生产管理系统&#xff0c;旨在优化员工的生产规范&#xff0c;提高产品质量。随着制造业的发展和数字化转型&#xff0c;越来越多的企业开始采用无纸化电子SOP系统来替代传统的纸质操作规程&#xff0c;以提升生产效率、降低成本、确保…

【变量提升】关于JavaScript变量提升的理解,它导致了什么问题?

&#x1f601; 作者简介&#xff1a;一名大四的学生&#xff0c;致力学习前端开发技术 ⭐️个人主页&#xff1a;夜宵饽饽的主页 ❔ 系列专栏&#xff1a;JavaScript小贴士 &#x1f450;学习格言&#xff1a;成功不是终点&#xff0c;失败也并非末日&#xff0c;最重要的是继续…

JumpServer 简介安装

目录 1、概念介绍 JumpServer 概述 JumpServer 功能 JumpServer 组件 JumpServer 架构 2、前置安装 环境要求 安装 ELRepo 库 更新内核 设置 grub2 安装 Python 配置 Python 虚拟环境 3、安装 Jumpserver Core 组件 下载安装 替换客户端组件 安装 Python 依赖库…

力扣刷题

文章目录 1. 双指针1.1 两数之和1.2 三数之和1.3 盛最多水的容器1.4 接雨水 2. 字串2.1 滑动窗口最大值 3. 动态规划4. 多维动态规划4.1 最长回文字串 1. 双指针 1.1 两数之和 思路&#xff1a;因为是有序数组&#xff0c; 1.2 三数之和 题目要求不能重复 思路&#xff1a;三…

FPGA 串口多字节发送,串口回环测试

串口接收 串口帧 设计文件 timescale 1ns / 1ps // // Company: // Engineer: // // Create Date: 2023/01/12 23:11:28 // Design Name: // Module Name: UART_Byte_Rx // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies…

python螺旋数字矩阵

python螺旋数字矩阵 给出数字个数n&#xff0c;输出1-n (0<n ≤999)和行数m (0<m ≤ 999)&#xff0c;从左上角的1开始&#xff0c;按照顺时针螺旋向内写方式&#xff0c;依次写出2,3.….&#xff0c;最终形成一个m行矩阵。 1.每行数字的个数一样多 2.列的数量尽可能少 3…

01-环境搭建、SpringCloud微服务-黑马头条

环境搭建、SpringCloud微服务(注册发现、服务调用、网关) 1)课程对比 2)项目概述 2.1)能让你收获什么 2.2)项目课程大纲 2.3)项目概述 随着智能手机的普及&#xff0c;人们更加习惯于通过手机来看新闻。由于生活节奏的加快&#xff0c;很多人只能利用碎片时间来获取信息&…

【netty系列-02】深入理解socket本质和BIO底层实现

Netty系列整体栏目 内容链接地址【一】深入理解网络通信基本原理和tcp/ip协议https://zhenghuisheng.blog.csdn.net/article/details/136359640【二】深入理解Socket本质和BIOhttps://zhenghuisheng.blog.csdn.net/article/details/136549478 深入理解socket本质和bio底层实现 …

【RT-DETR有效改进】全新的SOATA轻量化下采样操作ADown(轻量又涨点,附手撕结构图)

一、本文介绍 本文给大家带来的改进机制是利用2024/02/21号最新发布的YOLOv9其中提出的ADown模块来改进我们的Conv模块,其中YOLOv9针对于这个模块并没有介绍,只是在其项目文件中用到了,我将其整理出来用于我们的RT-DETR的项目,经过实验我发现该卷积模块(作为下采样模块)…

蓝桥杯备赛之二分专题

常用的算法二分模板 1. 在数组a[]中找大于等于x的第一个数的下标 //int ans lower_bound(a, a n, x) - a //相当于下方 int l 0, r n - 1; while(l < r) {int mid l r >> 1;if(a[mid] > x) r mid;else l mid 1; } cout << r;2. 在数组a[]中找大于…