挑战杯 基于深度学习的水果识别 设计 开题 技术

1 前言

Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解,
已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中,
以此来提高了水果图像的识别性能。

3 识别原理

3.1 传统图像识别原理

传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、
遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

在这里插入图片描述

3.2 深度学习水果识别

CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

在这里插入图片描述

学长本次采用的 CNN 架构如图:
在这里插入图片描述

4 数据集

  • 数据库分为训练集(train)和测试集(test)两部分

  • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

  • 图片类别可由图片名称中提取。

训练集图片预览

在这里插入图片描述

测试集预览
在这里插入图片描述

数据集目录结构
在这里插入图片描述

5 部分关键代码

5.1 处理训练集的数据结构

import os
import pandas as pd    

train_dir = './Training/'
test_dir = './Test/'
fruits = []
fruits_image = []

for i in os.listdir(train_dir):
    for image_filename in os.listdir(train_dir + i):
        fruits.append(i) # name of the fruit
        fruits_image.append(i + '/' + image_filename)
train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_image

print(train_fruits)

5.2 模型网络结构

import matplotlib.pyplot as plt
​    import seaborn as sns
​    from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
​    from glob import glob
​    from keras.models import Sequential
​    from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
​    img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
​    plt.imshow(img)
​    plt.axis("off")
​    plt.show()
​    

    array_image = img_to_array(img)
    
    # shape (100,100)
    print("Image Shape --> ", array_image.shape)
    
    # 131个类目
    fruitCountUnique = glob(train_dir + '/*' )
    numberOfClass = len(fruitCountUnique)
    print("How many different fruits are there --> ",numberOfClass)
    
    # 构建模型
    model = Sequential()
    model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(32,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(64,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation("relu"))
    model.add(Dropout(0.5))
    
    # 区分131类
    model.add(Dense(numberOfClass)) # output
    model.add(Activation("softmax"))
    model.compile(loss = "categorical_crossentropy",
    
                  optimizer = "rmsprop",
    
                  metrics = ["accuracy"])
    
    print("Target Size --> ", array_image.shape[:2])


## 

5.3 训练模型

    
​    train_datagen = ImageDataGenerator(rescale= 1./255,
​                                       shear_range = 0.3,
​                                       horizontal_flip=True,
​                                       zoom_range = 0.3)
​    

    test_datagen = ImageDataGenerator(rescale= 1./255)
    epochs = 100
    batch_size = 32
    train_generator = train_datagen.flow_from_directory(
                    train_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    test_generator = test_datagen.flow_from_directory(
                    test_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    for data_batch, labels_batch in train_generator:
        print("data_batch shape --> ",data_batch.shape)
        print("labels_batch shape --> ",labels_batch.shape)
        break
    
    hist = model.fit_generator(
            generator = train_generator,
            steps_per_epoch = 1600 // batch_size,
            epochs=epochs,
            validation_data = test_generator,
            validation_steps = 800 // batch_size)
    
    #保存模型 model_fruits.h5
    model.save('model_fruits.h5')


顺便输出训练曲线

    #展示损失模型结果
​    plt.figure()
​    plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
​    plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
​    plt.title("Model Loss", color = "darkred", size = 13)
​    plt.legend()
​    plt.show()#展示精确模型结果
    plt.figure()
    plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
    plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
    plt.title("Model Accuracy", color = "darkred", size = 13)
    plt.legend()
    plt.show()


![在这里插入图片描述](https://img-blog.csdnimg.cn/686ace7db27c4145837ec2e09e8ad917.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBARGFuQ2hlbmctc3R1ZGlv,size_17,color_FFFFFF,t_70,g_se,x_16)

在这里插入图片描述

6 识别效果

from tensorflow.keras.models import load_model
import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import image

train_datagen = ImageDataGenerator(rescale= 1./255,
                                    shear_range = 0.3,
                                    horizontal_flip=True,
                                    zoom_range = 0.3)

model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()

array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
train_dir = './Training/'

train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size= array_image.shape[:2],
        batch_size = batch_size,
        color_mode= "rgb",
        class_mode= "categorical”)
print(train_generator.class_indices)

在这里插入图片描述

    fig = plt.figure(figsize=(16, 16))
    axes = []
    files = []
    predictions = []
    true_labels = []
    rows = 5
    cols = 2
# 随机选择几个图片
def getRandomImage(path, img_width, img_height):
    """function loads a random image from a random folder in our test path"""
    folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))
    random_directory = np.random.randint(0, len(folders))
    path_class = folders[random_directory]
    file_path = os.path.join(path, path_class)
    file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]
    random_file_index = np.random.randint(0, len(file_names))
    image_name = file_names[random_file_index]
    final_path = os.path.join(file_path, image_name)
    return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_class

def draw_test(name, pred, im, true_label):
    BLACK = [0, 0, 0]
    expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)
    cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (255, 0, 0), 2)
    cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (0, 255, 0), 2)
    return expanded_image
IMG_ROWS, IMG_COLS = 100, 100

# predicting images
for i in range(0, 10):
    path = "./Test"
    img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)
    files.append(final_path)
    true_labels.append(true_label)
    x = image.img_to_array(img)
    x = x * 1./255
    x = np.expand_dims(x, axis=0)
    images = np.vstack([x])
    classes = model.predict_classes(images, batch_size=10)
    predictions.append(classes)

class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())

for i in range(0, len(files)):
    image = cv2.imread(files[i])
    image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])
    axes.append(fig.add_subplot(rows, cols, i+1))
    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    plt.grid(False)
    plt.axis('off')
plt.show()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/438522.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【自动驾驶系列丛书学习】2.《自动驾驶汽车环境感知》学习笔记

《自动驾驶技术概论》学习笔记 致谢:作者:甄先通、黄坚、王亮、夏添 -------------------------------------------------------------------------------------------------------- 笔记目录 -----------------------------------------------------…

1911_野火FreeRTOS教程阅读笔记_请求任务切换

1911_野火FreeRTOS教程阅读笔记_请求任务切换 全部学习汇总: g_FreeRTOS: FreeRTOS学习笔记 (gitee.com) 还有一部分任务切换请求的代码没有分析。 实现上是一个宏定义,实现的工作主要的核心点还是请求PendSV的exception。当这个调用的时候,下…

基于Spring Boot的图书个性化推荐系统 ,计算机毕业设计(带源码+论文)

源码获取地址: 码呢-一个专注于技术分享的博客平台一个专注于技术分享的博客平台,大家以共同学习,乐于分享,拥抱开源的价值观进行学习交流http://www.xmbiao.cn/resource-details/1765769136268455938

消息队列的原理与基本使用

文章目录 消息队列定义优点 与 缺点优点缺点常见的消息队列 消息队列的配置消息队列的简单使用生产者消费者运行 消息队列 定义 消息队列(message queue)是一种用于在软件系统中传输、存储和处理消息的机制。它通常用于异步通信,允许不同的组…

机器学习:探索计算机的自我进化之路

当我们谈论机器学习时,我们在谈论什么呢?机器学习是一门跨学科的学科,它使用计算机模拟或实现人类学习行为,通过不断地获取新的知识和技能,重新组织已有的知识结构,从而提高自身的性能。简单来说&#xff0…

导数与微分错题本

《1800》 1 缺乏构造函数的技巧 2 3 等价无穷小构造函数 4 这个构造有点难。补充几个数字构造导数定义 5 6 通过举例子排除真的好 7 8 我不想输 9 注意自变量为x的平方 10 导数对应的x为y的变量 11 代入定义式 12 13 14 15 16 17 18 19 20

php调用guzzlehttp库时出现Segmentation fault的解决方案

先说结论,这个问题的原因是因为php7.4与openssl3不兼容产生的,解决方案如下: 输入openssl version -a查看openssl版本,如果是3以上的版本与php7.4不兼容,7.4以下的没测试过,估计也有问题。我最终是安装上了…

日韩媒体宣传案例分析:CloudNEO 为您提供海外媒体宣传最佳途径

近年来,随着互联网的迅速发展和全球化的加速推进,海外市场对于企业的重要性日益凸显。尤其是在亚洲地区,日本和韩国作为亚洲最具活力和潜力的市场之一,成为众多企业争相开拓的目标。在这个过程中,媒体宣传不仅是企业推…

【机器学习】详解正则化思想

我们的生活当中真正有意义或者有价值的部分可以概括为两句话:一句话是:弄清楚某个东西是怎么一回事,另一句话是,弄清楚某个东西是怎么一回事。头一句话,我们弄清楚的那个东西对于我们而言是未知的,但是已经…

算法49:动态规划专练(力扣1139题:最大正方形面积)

题目: 给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0。 示例 1: 输入:grid [[1,1,1],[1,0,1],[1,1,1]…

【如何成为一名好的系统架构设计师】

曾梦想执剑走天涯,我是程序猿【AK】 目录 简述概要知识图谱1.如何成为一名好的系统架构设计师1.1 如何衡量一名优秀架构设计师1) 作为技术领导者2) 作为开发人员3) 聚焦系统4) 具备企业家思维5) 权衡策略思维与战术思维6) 良好的沟通 1.2 从工程师到系统架构设计师的…

sql server使用逗号,分隔保存多个id的一些查询保存

方案一,前后不附加逗号: 方案二,前后附加逗号: 其他保存方案: (这里是我做一个程序的商家日期规则搞得,后面再补具体操作): 1,2,3 | 1,2,3 | 1,2,3; 1,2,3 &#xff1…

如何恢复未保存的 Excel 文件

本周我们将 Office 恢复系列扩展到 Excel 恢复,并提出了最常见的问题:如何恢复 Excel 文件? 与 Office Word 不同,Excel 完全是关于表格和计算的。在处理Excel文件时,您可能会遇到更多问题。与往常一样,我们…

STM32CubeMX学习笔记15---CAN总线

1、CAN简介 CAN总线网络的结构有闭环和开环两种形式 闭环结构的CAN总线网络,总线两端各连接一个1202的电阻。这种CAN总线网络由ISO11898标准定义,是高速、短距离的CAN网络,通信速率为125kbit/s到1Mbit/s。在1Mbit/s通信速率时&#x…

【嵌入式——QT】Model/View

【嵌入式——QT】Model/View 基本原理数据模型视图组件代理Model/View结构的一些概念QFileSystemModelQStringListModelQStandardItemModel自定义代理 基本原理 GUI应用程序的一个很重要的功能是由用户在界面上编辑和修改数据,典型的如数据库应用程序,数…

wsl 安装 ubuntu

文章目录 打开Windows PowerShell查看可安装的ubuntu安装相对应的ubuntu将用户添加到sudoers文件中,并赋予了该用户sudo权限。 打开Windows PowerShell 以管理员的身份运行 查看可安装的ubuntu wsl.exe --list --online安装相对应的ubuntu wsl --install 版本…

计算机网络面经-HTTPS加密过程

前言 在上篇文章HTTPS详解一中,我已经为大家介绍了 HTTPS 的详细原理和通信流程,但总感觉少了点什么,应该是少了对安全层的针对性介绍,那么这篇文章就算是对HTTPS 详解一的补充吧。还记得这张图吧。 HTTPS 和 HTTP的区别 显然&am…

安装zabbix

部署Zabbix监控平台 部署一台Zabbix监控服务器,一台被监控主机,为进一步执行具体的监控任务做准备: 安装LNMP环境源码安装Zabbix安装监控端主机,修改基本配置初始化Zabbix监控Web页面修改PHP配置文件,满足Zabbix需求…

2024 GoLand激活,分享几个GoLand激活的方案

文章目录 GoLand公司简介我这边使用GoLand的理由GoLand 最新变化GoLand 2023.3 最新变化AI Assistant 正式版GoLand 中的 AI Assistant:_Rename_(重命名)GoLand 中的 AI Assistant:_Write documentation_(编写文档&…

VScode+Zotero+Latex文献引用联动

一、VScodeLatex联动 1、VScode的安装 2、texlive.iso安装 可以参考以下,也可以忽略所有直接一步一步默认安装 https://zhuanlan.zhihu.com/p/442308176 3、Vscode的插件安装:【latex workshop】 4、打开设置,搜索json,然后点击…