题目描述
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1]
和 [-1,-1,2]
。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示:
3 <= nums.length <= 3000
-10^5 <= nums[i] <= 10^5
题解
快排 + 双指针法
代码
/**
* Return an array of arrays of size *returnSize.
* The sizes of the arrays are returned as *returnColumnSizes array.
* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
*/
// Define a comparison function for qsort to sort integers in ascending order
int cmp(const void *a, const void *b)
{
return *(int*)a - *(int*)b;
}
// Function to find all unique triplets that sum up to zero
int** threeSum(int* nums, int numsSize, int* returnSize, int** returnColumnSizes)
{
*returnSize = 0; // Initialize the return size to 0
if(numsSize < 3)
return NULL; // If the input array has less than 3 elements, return NULL as no triplet can be formed
qsort(nums, numsSize, sizeof(int), cmp); // Sort the input array in ascending order using the custom comparison function
// Allocate memory for the 2D array to store the triplets and their sizes
int **ans = (int **)malloc(sizeof(int *) * numsSize * numsSize);
*returnColumnSizes = (int *)malloc(sizeof(int) * numsSize * numsSize);
int i, j, k, sum;
int indexLeft = 0;
int indexMiddle = 0;
int indexRight = 0;
// Use three pointers to traverse the sorted array and find triplets that sum up to zero
for (indexLeft = 0; indexLeft < numsSize - 2; indexLeft++)
{
if (nums[indexLeft] > 0)
{
// If the current element is greater than 0, no triplet can sum up to zero, return the result
/* if nums[indexLeft] is greater than 0,
* the function immediately returns ans .
* In this case, ans will be returned without any modifications or additional calculations.
* The ans variable is a pointer to a 2D array of integers,
* and at that point in the code, it would be returned as it is,
* without any triplets being calculated or added to it.
*/
return ans;
}
// Skip duplicate values
/* the keyword continue is used within a loop after a condition is met.
* When continue is encountered,
* it causes the program flow to immediately jump to the next iteration of the loop
* without executing the remaining code within the loop for the current iteration.
* This helps in avoiding processing duplicate elements and
* ensures that only unique elements are considered during the loop execution.
*/
if (indexLeft > 0 && nums[indexLeft] == nums[indexLeft - 1])
continue;
indexMiddle = indexLeft + 1;
indexRight = numsSize - 1;
// Use two pointers to find all possible triplets
while (indexMiddle < indexRight)
{
sum = nums[indexLeft] + nums[indexMiddle] + nums[indexRight];
if (sum == 0)
{
// If the sum is zero, store the triplet in the ans array
ans[*returnSize] = (int*)malloc(sizeof(int) * 3);
(*returnColumnSizes)[*returnSize] = 3;
ans[*returnSize][0] = nums[indexLeft];
ans[*returnSize][1] = nums[indexMiddle];
ans[*returnSize][2] = nums[indexRight];
*returnSize += 1;
// Skip duplicate values
// This step is crucial to avoid considering the same combination of elements multiple times and ensures that only unique triplets are recorded.
while (indexMiddle < indexRight && nums[indexMiddle] == nums[++indexMiddle]);
while (indexMiddle < indexRight && nums[indexRight] == nums[--indexRight]);
}
else if (sum > 0)
{
// If the sum is greater than zero, decrement the right pointer
indexRight--;
}
else
{
// If the sum is less than zero, increment the middle pointer
indexMiddle++;
}
}
}
return ans; // Return the 2D array containing the unique triplets
}
作者:我自横刀向天笑
链接:https://leetcode.cn/problems/3sum/solutions/1211127/san-shu-zhi-he-cyu-yan-xiang-jie-chao-ji-08q2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。