质效两全:媒体服务的创新“顶设”

做媒体服务,一定要有刻入骨髓的抽象思维。

视频化浪潮汹涌、生成式人工智能AIGC极速迭代、体验需求和应用场景愈发多样......面对“视频生产力”的变革,我们能否透过纷繁复杂的表象,洞察音视频行业的“真正需求”?

是否存在一套优雅的媒体服务设计,满足多方需求?如何“落地”实现价值?保持“持续生命力”的关键又是什么?

随着AIGC和大模型的能力加持,媒体服务的“全智能”又将如何演进?

本文由IMMENSE、「阿里云视频云」媒体服务负责人邹娟和LiveVideoStack策划、采访而成。

再探“真正需求”

大视频行业的真正“需求”是什么?

在视频化领域,关键无外乎是视频的生产与视频的消费。那么,关于大视频行业的真正“需求”,我们也可以从视频生产端视频消费端两个维度来讨论。

对于视频生产端而言,快速、高效地生产视频可以抢占发布先机、吸引观众;而提供更优质、创新、综合体验好的视频内容可以留住观众

对于视频消费端而言,最重要的是“体验”:题材新颖、有趣,内容丰富且有“获得感”;视频的画面和声音感官效果好;获取的信息是“第一手”、最新鲜的......

看似需求多样,实则无论是生产还是消费的需求,可以归结为两个关键词:“高时效” 和“高质量”。

规模化下,“高时效”和“高质量”可以两全吗?

“高时效”需要生产力和生产效率的提升,意味着相同时间内生产更多视频内容,这也会带来规模(数量、时长、行业、场景)的扩大。

在规模化之下,“高时效”与“高质量”看似难两全,但随着“云计算”与“人工智能”时代的到来,局面便大不相同了。

云计算既能提供海量、高并发、弹性的视频处理能力,还能将多种视频业务、多个视频场景,用最优的组织和调度方式,错峰亦或是混跑,这便实现了两个维度的“规模化”。在此之上,云可以将单个视频的高质量特性完美复刻,从而快速实现“高质量”视频的规模化

在此基础上,随着AI的不断发展和深入,智能能力在某些场景上比传统人力更精准、更高效,这也同样促成了规模化下的“高时效”与“高质量”

新数智时代,云和AI走向深度融合,而随着AIGC的大爆发,AI不再仅仅作为单点能力应用在某个环节,一切皆向着“全智能”演进。

“顶层设计”与“发动机”

云厂商面对“内容生产革命”,下一步“剑指何方”?

云厂商,天然的To B角色。由于不同行业、不同业务场景、不同需求的客户,所需的功能、性能、时效性、实现效果大相径庭。

因此,对云厂商来讲,开放、灵活、多场景的问题是必然需要解决的。

展开来说,视频的全链路从采集开始,历经制作、处理、管理、分发、消费,每一个环节包含了非常多所需的媒体原子能力。在面对不同场景以及不同行业的客户需求时,对这些原子能力的使用深度和组合方式,是十分不同的。

因此,经总结提炼和抽象后形成的统一“顶层设计”,便是云厂商的“制胜法宝”。

求本溯源,我们如何在“顶层”寻求解决之道?

首先,是将媒体原子服务“打散”,再“重组”。

这里,一是需要将视频全链路的媒体原子服务作细粒度拆分,并把每个服务做深做透;二是以一套灵活的编排机制,将这些原子服务依照客户的设想、场景、业务流,实现自由搭建和组装。

再者,是底层媒体技术的统一设计。

视频处理流程由解封装、解码、前处理、编码、封装这几个主要环节构成,我们需要一个下接算法、上联调度的“媒体引擎”,构建统一的媒体处理框架,将这些环节组织起来、支持多种算法、灵活集成插件、处理各类格式。

媒体原子服务的“打散”和“重组”,构建了媒体服务“最上层”可灵活编排的业务流,而统一“媒体引擎”是媒体任务在底层“执行层”实现高时效、高性能及丰富功能的基石。

最后,在二者之间,还需要统一的“媒体分布式服务框架和媒体元数据体系”做一层连接,其中包括了:跨产品跨场景的统一媒资OneMediaID、统一工作流、统一的媒体业务流消息处理机制、统一的媒体任务管道调度机制等。

由此,形成了一套统一顶设的“媒体服务”。

其中,媒体引擎是当之无愧的“发动机”?

我们讲到了“媒体引擎”,它是整个媒体服务的底层核心,是所有媒体处理和媒体生产制作任务的执行器,既需要处理传统的媒体处理类的任务,也需要处理各式各样AI任务,从而真正实现下接算法,上联调度。

“媒体引擎”同时涉及“编排层”技术,以及“内核层”技术。这里的“编排”并不是指业务流的“编排”,而是单任务处理各环节的“编排”和算子的“编排”

通过统一的编排Pipeline及策略,“媒体引擎”能灵活支持不同任务的多种参数组合,并使得这些参数组合的执行效果达到画质、性能、码率、时效性等多维权重的综合最佳。

此外,“媒体引擎”还负责对任务进行最优的执行策略。

比如:是整段执行还是并行执行?是切片级别并行还是帧级别并行?是否需要调用特殊的组件甚至使用特殊的机型?以及算子是否存在依赖关系?.....我们把媒体引擎的这类决策能力称为“media worker brain”。

在这样的大脑调配之下,对任务最优执行策略的追求,亦是对“高质量”和“高时效”追求的一脉相承。

持续的生命力:灵活、开放、多业务

一个平台的持续生命力,源于什么?

反复强调“顶层设计”,因为作为ToB的云厂商,阿里云视频云一定要解决多业务、灵活、开放的问题。

我们既需要考虑不同客户业务的个性与特色,又不能全部case-by-case地贴身定制,因此我们一定要有“刻入骨髓”的抽象思维,需要时时刻刻总结、提炼、抽象,对产品、模块、服务、API的设计皆是如此。

于是,“顶层设计”可以避免每个业务板块或模块在各自“舒适”的体系里“野蛮发展”,一切皆从全局来规划权衡

仔细看来,媒体服务的“顶设”先基于已有需求及客户场景,按照媒体服务的5大模块(媒体汇聚、媒体处理、媒体生产与制作、媒体管理、媒体消费),将媒体能力进行梳理、总结,并以“可复用”为依据,将其进一步打碎成细粒度的原子媒体能力,经过一层或多层的共性抽象,实现不同范围的Service。

比如:在媒体生产制作模块,媒体服务既提供了偏原子的VideoDetext去字幕服务,也提供了更综合的剪辑合成服务。

同时,需要将相对固定的和经过变化的部分进行分离,提供一些系统内置的媒体流程,降低客户的开发难度,而针对客户希望有更高灵活度的场景,还设计了类似可编程的脚本或策略进行自定义。

开放性也是媒体服务顶层设计的另一个关注点。

智能媒体服务的开放性体现在:除了支持阿里云产品的相关协议和能力之外,还支持国际或国内的标准协议及部分第三方厂商的协议和能力。

比如,在低延时传输这个领域,智能媒体服务除了支持自家的RTS之外,还支持LL-HLS、LHLS、Dash/CMAF等;

再比如,我们除了支持阿里云OSS作为媒体处理服务的输入输出之外,还支持AWS的S3、以及HTTP URL等;

还有,我们除了可以支持自研音视频及AI算法之外,也支持接入经过安全校验的三方AI算子等。

我们相信,只有开放与合作,才能让技术持续焕发生命力。

“顶设”落地,能让“高时效”再高一节吗?

当“顶设”帮我们突围了多业务、灵活、开放的壁垒,自然而然,就带来了更高的“高时效”。

深入其中,这包含4个维度的技术:

一是在工程架构层面,设计并实现“并行”处理框架,将整段视频或时间线Timeline先分片Split,做“并行”处理后再进行“合并”,这项技术适合“中长视频”或输入为“多个素材”的场景;

二是针对“单片”任务进行“性能优化”,包括算法优化、指令集优化、算法在引擎层的工程优化、pipeline优化以及算法和调度的联合优化等,使得任务在考虑源文件适配、任务参数特性、机型及配置、资源水位等多维度情况下实现最优执行;

三是在“分布式服务层”优化媒体业务流的编排,让流程的Activities在更广的范围内自由连接,如:边录边转、边播边转等,这可以让不同的产品和服务通过同一流程串联起来,从而实现跨场景甚至跨产品的流程提速;

四是“AI能力”的加持,无论是在算法层、引擎层还是在分布式的服务层,在处理规模化视频时,可以将AI带来的优势极致发挥,实现“高时效”的进一步提升。

如果一切都在无限解决媒体服务的“高时效”,那“高质量”的完美实现,在当下可以更多的利用AI能力。

AI:日新月异的“加速力”

还追得上AI的迭代和AIGC的演进吗?

大模型和AIGC技术的发展,可以用“日新月异”来形容,其迭代速度史无前例,涌现出的各类垂直应用模型,也使得音视频行业的应用场景更加广泛和多样化。

更重要的是,大模型以及AIGC可以运用更大量的数据、更复杂的算法、以及更强力的算力支撑,大大提高音视频处理的精度和效果,带来无限想象。

在这场AIGC风暴之前,我们的媒体服务已先行布局,让AI能力可以灵活参与视频的各种智能化场景,将AI的迭代和AIGC的演进,纳入智能化的“顶层设计”。

针对AIGC的演进(以内容创作领域为例),从序曲开始,我们设定了五个阶段:

➤ 第一阶段(序曲):AI负责素材的预处理,并按预设模版进行编排,实现视频全智能生产的第一个阶段。

➤ 第二阶段:在素材预处理之上,还能完成本属于视频创意环节的编排工作(脚本设计/Timeline设计),从而实现智能批量混剪。

➤ 第三阶段:面向特定场景和特定要求的成品,由AI根据已有成片反向解构分镜头,负责素材的搜索、筛选(以及部分素材生成)、处理、编排,并最终制作合成。

➤ 第四阶段:面向特定场景,AI负责理解场景的要求,包括素材的搜索、筛选(以及部分素材生成)、处理、编排,并最终制作合成。

➤ 第五阶段:针对多种场景,依据海量丰富的数据,AI能够自行发掘创意点,真正拥有“创作力”。

简扼来说,AI逐步渗透业务,从能力到场景,先单例后普适、先局面再整体、先执行再创意,完成AI从辅助业务到对业务全智能变革的演进。

可以看出,从前的AI只是辅助创作,而今天的AI已然可以成为创作的主角。

再往前看,无论元宇宙还是Web3.0,下一代互联网的繁荣需要海量的数字内容,对内容的数量、形式和交互性都提出了更高的要求。

举例来说,很多基于大模型的图像增强、实景抠图等技术,在效果上已优于传统AI算法;再比如,运用Text to Video(文本转化为视频)生成几秒空镜头、Image to Video(图像转化为视频)生成一段连续动作的视频,不仅能解决高质量的问题,还能实现“无中生有”的突破之作。

未来,运用AIGC的能力,智能媒体服务在生产制作领域,可以极大提升“一键成片”的效果,在智能生成、时间线的智能编排,以及智能剪辑和包装等各环节,都将逐一击破生产制作的效率、质量痛点;在媒资领域,也能运用AIGC生成视频摘要等,为媒资管理提供更多新能量。当然,全方位的探索都在进行中。

大模型时代的AIGC,期待不止。

7月28日下午

LiveVideoStackCon2023上海站

阿里云视频云专场

阿里云智能资深技术专家

《从规模化到全智能:媒体服务的重组与进化》

一起探索媒体服务的创新“顶设”!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/43524.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Python学习笔记】记载解决Python报错HTTP Error 403: Forbidden的一波三折过程

【Python学习笔记】记载解决Python报错HTTP Error 403: Forbidden的一波三折过程 当前进度:还没有解决,但是已经尝试了好几种办法,此处做个记录,也许能帮上忙。 本帖是整理回顾帖,不是教程帖,追求一个完美…

在 Windows 中通过 WSL 2 高效使用 Docker

大家好,我是比特桃。平时开发中,不免会使用一些容器来跑中间件。而开发者使用的操作系统,大多是Mac OS 、Windows。Docker 为了兼顾这两个平台的用户,推出了 Docker Desktop 应用。Docker Desktop 中的内核还是采用了 Linux 的内核…

智能合约安全审计

智能合约安全审计的意义 智能合约审计用于整个 DeFi 生态系统,通过对协议代码的深入审查,可以帮助解决识别错误、低效代码以及这些问题。智能合约具有不可篡改的特点,这使得审计成为任何区块链项目安全流程的关键部分。 代码审计对任何应用…

基于OpenCV的红绿灯识别

基于OpenCV的红绿灯识别 技术背景 为了实现轻舟航天机器人实现红绿灯的识别,决定采用传统算法OpenCV视觉技术。 技术介绍 航天机器人的红绿灯识别主要基于传统计算机视觉技术,利用OpenCV算法对视频流进行处理,以获取红绿灯的状态信息。具…

Qt5.14.2下载及安装

1. 下载 https://download.qt.io/archive/qt/5.14/5.14.2/ 由于Qt 自从5.15版本开始,对非商业版本(也就是开源版本),不提供已经制作好的离线exe安装包。所以,对于5.15(含)之后的版本&#xff…

苹果账号被禁用怎么办

转载:苹果账号被禁用怎么办 目录 禁用的原因 解除Apple ID禁用 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UKQ1ILhC-1689932607373)()]​编辑 …

MySQL的主从复制练习

基本原理图如下: 主从复制(也称 AB 复制)允许将来自一个MySQL数据库服务器(主服务器)的数据复制到一个或多个MySQL数据库服务器(从服务器)。当主库进行更新的时候,会自动将数据复制到…

从C到C++ | C++入门(三)

目录 内联函数 auto 关键字 范围for 指针空值nullptr 内联函数 以inline修饰的函数叫内联函数&#xff0c;编译时C编译器会在调用函数的地方展开&#xff0c;没有函数调用建立栈帧的开销&#xff0c;可提升程序的运行效率。 例子&#xff1a; #include <iostream> …

【C++修炼之路】内存管理

&#x1f451;作者主页&#xff1a;安 度 因 &#x1f3e0;学习社区&#xff1a;StackFrame &#x1f4d6;专栏链接&#xff1a;C修炼之路 文章目录 一、C/C 内存分布二、考题三、C语言动态内存管理方式四、C内存管理方式1、对内置类型2、对自定义类型 五、C对动态管理的升级六…

查找和二叉树(基础知识和基本操作)

查找&#xff1a; 1.二分查找&#xff1a;先定一个大范围&#xff0c;想一个数&#xff0c;看是在起始范围到中间范围还是中间范围到结束范围&#xff0c;依次循环直到确定值&#xff08;相当于一直把范围折半&#xff0c;直到找到&#xff09; while(low<high) {int mid(…

分布式光伏电站运维平台在石化行业的应用光伏发电数据实时监控

摘要&#xff1a;为实现绿色发展和“净零排放”的目标&#xff0c;近些年来国内外不少能源化工企业进入光伏发电领域。如何做好光伏电站的运行维护&#xff0c;成为石化企业不得不思考的重要课题。本文从分布式光伏电站消防安全、作业安全、环保管理等方面进行思考&#xff0c;…

为什么学习SpringSpring框架核心与设计思想(IOC与DI)?

博主简介&#xff1a;想进大厂的打工人博主主页&#xff1a;xyk:所属专栏: JavaEE进阶 目录 文章目录 一、Spring是什么&#xff1f; 二、为什么要学习框架&#xff1f; 三、Spring核心概念 3.1 什么是容器&#xff1f; 3.2 什么是IOC&#xff1f; 四、再谈Spring中的 IOC 五…

mac如何提取视频中的音频?

mac如何提取视频中的音频&#xff1f;我们经常在平时工作的时候&#xff0c;需要将一个视频里面的音频单独提取出来另做他用&#xff0c;例如很多视频自媒体博主就经常使用这种方法来储备音频素材&#xff0c;这个操作在Windows上面比较容易实现&#xff0c;毕竟有相当多的软件…

计算机网络微课堂学习笔记(详细图解讲解)-长期更新

前言&#xff1a; 计算机网络在信息时代的作用 计算机网络已由一种通信基础设施发展成为一种重要的信息服务基础设施&#xff0c;计算机网络已经像水、电、煤气这些基础设施一样&#xff0c;成为我们生活中不可或缺的一部分 一、因特网概述 &#xff08;1&#xff09;网络、…

黑马 pink h5+css3+移动端前端

网页概念 网页是网站的一页,网页有很多元素组成,包括视频图片文字视频链接等等,以.htm和.html后缀结尾,俗称html文件 HTML 超文本标记语言,描述网页语言,不是编程语言,是标记语言,有标签组成 超文本指的是不光文本,还有图片视频等等标签 常用浏览器 firefox google safari…

Git标签管理(对版本打标签,起别名)

tag 理解标签创建标签git tag [name]git show [tagname] 操作标签删除标签git tag -d < tagname > 推送某个标签到远程git push origin < tagname > 理解标签 标签 tag &#xff0c;可以简单的理解为是对某次 commit 的⼀个标识&#xff0c;相当于起了⼀个别名。 …

实际上手体验maven面对冲突Jar包的加载规则 | 京东云技术团队

一、问题背景 相信大家在日常的开发过程中都遇到过Jar包冲突的问题&#xff0c;emm&#xff0c;在最近处理业务需求时我也遇到了不同版本jar包冲突导致项目加载出错的问题。主要是一个完整的项目会不可避免的使用第三方的Jar包来实现功能开发&#xff0c;各种第三方包之间可能…

【Linux】自动化构建工具-make/Makefile详解

前言 大家好吖&#xff0c;欢迎来到 YY 滴 Linux系列 &#xff0c;热烈欢迎&#xff01;本章主要内容面向接触过Linux的老铁&#xff0c;主要内容含 欢迎订阅 YY 滴Linux专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 订阅专栏阅读&#xff1a;YY的《…

跨网段耦合器的作用

你是否曾经遇到过需要跨网段访问设备的问题&#xff1f;比如在工业自动化领域&#xff0c;PLC和数控设备的连接。这时候&#xff0c;远创智控YC8000-NAT就能帮你轻松解决。 1, 远创智控YC8000-NAT是一款功能强大的设备&#xff0c;它可以将LAN1口所连接PLC的IP地址和端口号&a…

使用wxPython和pillow开发拼图小游戏(四)

上一篇介绍了使用本地图片来初始化游戏的方法&#xff0c;通过前边三篇&#xff0c;该小游戏的主要内容差不多介绍完了&#xff0c;最后这一篇来介绍下游戏用时的计算、重置游戏和关闭窗口事件处理 游戏用时的计算 对于游戏用时的记录&#xff0c;看过前几篇的小伙伴可能也发现…