分类算法(Classification algorithms)

逻辑回归(logical regression):

逻辑回归这个名字听上去好像应该是回归算法的,但其实这个名字只是在历史上取名有点区别,但实际上它是一个完全属于是分类算法的。

我们为什么要学习它呢?在用我们的线性回归时会遇到一个很大的问题,就比如一下的图形。

在这里我们把以上的图形进行了我们的线性回归得到了在0.5纵坐标的分界线,在0.5左侧是我们的良性肿瘤而在右边是我们的恶性肿瘤,这时我们得到了我们判断是否是良性肿瘤的方法,但当我们再添加一个数据时。

  

我们会发现我们的线性回归往右边平移了,而判断是否为良性肿瘤的值也往右边移动了,这时我们的模型就会因为我们的数据而发生变化,这很明显不是一个准确的方法,让我们得到我们需要的数据。所以我们需要学习一种叫做逻辑回归的算法。

逻辑函数(sigmoid function)

所以我们要创建一种新的函数。 

这里我们使用了sigmoid函数, 

可以看到我们这个函数,g(z)=\frac{1}{1+e^{-z}},它所得到的函数可以是我们上图所示的样子。(可以自己手动画一下)在无限接近正无穷的地方它还是在缓慢的上升,而在负无穷处它则是无限接近于0。

那我们如何才能写一个逻辑回归函数呢?

第一步:我们的回归函数是f_{w,b}(\vec{x}),它的具体写法是z = \vec{w}\cdot \vec{x}+b.。

第二步:我们sigmoid函数是g(z)=\frac{1}{1+e^{-z}}

第三步:我们把第一个式子代入,也就变成了f_{w,b}(x)=g( \vec{w}\cdot \vec{x}+b)=\frac{1}{1+e^{-( \vec{w}\cdot \vec{x}+b)}}

我们解释一下我们得到的函数,在原来g(z)=\frac{1}{1+e^{-z}}函数中我们知道它的y值在0到1,所以我们输入的x总会得到我们的一个值,而这个值一定在0和1之间,举一个例子。就那我们的判断肿瘤是否是恶性的例子,当我们的值为1时,则肿瘤为恶性肿瘤,当我们的值为0时,则它为良性肿瘤,当我们代入一个值时,y值输出为0.7,那么它就表示你有70%的概率会是恶性肿瘤。那为良性肿瘤的概率则为我们的30%。

这里有几个写法需要我们注意:1.p(y=1)+p(y=0)=1,它指的是我们为1和为0的概率加起来为100%。2.f_{w,b}(\vec{x})=p(y=1|\vec{x};\vec{w},\vec{b}),它代表的意思就是我们的y=1时,我们的概率,而这里的w,b他们代表的只是它们对我们的答案会造成影响。

决策边界(Decision Boundary):

简单来说我们的决策边界就是当我们的逻辑函数曲线,在y值等于0.5时,也就是我们的z=0时,我们可以看看这个图。

也就是 \vec{w}\cdot \vec{x}+b = 0。我们举一个例子。比如得到了以下的图形。

在图中我们的❌指的是我们的好的事物,而⭕️指的是坏的事物,这时,我们要找到我们的决策分界线。

我们得到的数据是f_{w,b}(x)=g( \vec{w}\cdot \vec{x}+b)=g(x1\cdot w1+x2\cdot w2+b),这时我们假设我们的w1=1,w2=1,b=-3。这时我们得到的决策函数也就是x_{1}+x_{2}+b=0,x_{1}+x_{2}=3,这时我们就可以画出完美的决策边界。

在上面就是我们的好事物,下面就是坏事物。这里有一个要强调,我们一般把0.5以上的看作是1,把0.5以下的看作成0。 

当然也有多项式的情况,比如下图。

逻辑函数的成本函数(cost function):

在这个例子里面,我们的判断是否是一个良性肿瘤需要多组训练集,这里在前面几个特征与线性回归类似,而最后一个判断是否是良性或恶性用的是1和0来表示。

我们用原来的线性回归中,使用的成本函数,我们得到的图形将是。凹凸不平的,这让我们用梯度下降时只能取到我们的局部最小值,而不能得到我们的全局最小值。 

所以我们要用一个不一样的成本函数。

我们得到了一个新的成本函数:L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)}) ,它的值和\frac{1}{2}(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})^{2}相同,这个比较难推导,可以自己试一下(不建议)。

这时我们会得到两个对数函数,我们会在1和0时用到不同的函数去进行计算。

我们先看上面那一个方程,我们会发现预测的值越接近于1我们的损失就会越小,而我们接近于0的损失就会变大。同样的道理对于下面拿个方程。 

这里的损失函数,每一个都是一个单独的训练项,而不是一个集合。所以在这里的完整的成本函数写法是:J(\vec{w},b)=\frac{1}{m}\sum_{i=1}^{m}L(f_{\vec{w},b}(\vec{x}^{(i)},y^{(i)})) 

因为在这里我们的\hat{y}不是1就是0,所以我们可以简化我们的式子,那么它就变成了:

L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)})=y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)}))-(1-y^{(i)})log(1-f_{\vec{w},b}(\vec{x}^{(i)}))J(\vec{w},b)=-\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)}))-(1-y^{(i)})log(1-f_{\vec{w},b}(\vec{x}^{(i)})))

很明显它与我们在上面的式子是等价的。它是一种叫做最大似然估计的统计原理。

逻辑回归的梯度下降(gradient descent for logical regression):

在我们得到了我们的成本函数,接下来我们就要进行我们的梯度下降,还是一样的公式。

得到了我们的成本函数的式子:J(\vec{w},b)=-\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)}))-(1-y^{(i)})log(1-f_{\vec{w},b}(\vec{x}^{(i)})))

然后我们还是用相同的方法进行我们的梯度下降。

{ w_{j}=w_{j}-\alpha \frac{\partial }{\partial w_{j}}J(\vec{w},b) }b=b-\alpha \frac{\partial }{\partial b}J(\vec{w},b)

同样的道理,在这里的w,b的值是同时进行改变的,而没有先后的关系。两个偏导数算完之后我们才可以得到我们在上面的两个我们需要的特征值。

上面这个式子似乎和我们一开始在线性回归中用到的函数似乎是一样的但其实我们的f函数是完全不一样的,我们在我们的线性回归中,我们的函数是:f_{\vec{w},b}(\vec{x})=\vec{w}\cdot \vec{x}+b,而在我们的逻辑回归中我们的函数是sigmoid函数(逻辑函数)。只是在我们算我们的梯度下降时我们用到的公式相同罢了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/435063.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Xss-labs-master 1-16关

第一关 <?php ini_set("display_errors", 0); $str $_GET["name"]; echo "<h2 aligncenter>欢迎用户".$str."</h2>"; ?> <center><img srclevel1.png></center> <?php echo "&l…

OpenAI-Sora学习手册

通过Sora看2024红利&#xff1a;文生视频&#xff0c;虽然AI不一定是风口&#xff0c;但一定是未来深入到生活工作&#xff0c;乃至思考的必备工具。 目录 Sora介绍 Sora基础介绍 Sora官方网址 Sora的价值 1.物理世界的交互 2.创意世界的绽放 3.多角色、更精准、更细节…

两天学会微服务网关Gateway-Gateway网关限流

锋哥原创的微服务网关Gateway视频教程&#xff1a; Gateway微服务网关视频教程&#xff08;无废话版&#xff09;_哔哩哔哩_bilibiliGateway微服务网关视频教程&#xff08;无废话版&#xff09;共计17条视频&#xff0c;包括&#xff1a;1_Gateway简介、2_Gateway工作原理、3…

shell脚本一键部署docker

Docker介绍 Docker 是一个开源的平台&#xff0c;用于开发、交付和运行应用程序。它利用容器化技术&#xff0c;可以帮助开发人员更轻松地打包应用程序及其依赖项&#xff0c;并将其部署到任何环境中&#xff0c;无论是开发工作站、数据中心还是云中。以下是 Docker 的一些关键…

ChatGPT提问技巧——控制温度和TOP-P样本

ChatGPT提问技巧——控制温度和TOP-P样本 “控制温度和Top-P抽样”在自然语言处理中&#xff0c;控制温度是指通过调整生成文本的随机性和多样性&#xff0c;而Top-P抽样是一种生成文本的策略&#xff0c;它选择概率最高的前P个词作为候选词汇。这两个技术常用于生成文本的质量…

ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的应用

以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮&#xff0c;可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…

DataFunSummit 2023:洞察现代数据栈技术的创新与发展(附大会核心PPT下载)

随着数字化浪潮的推进&#xff0c;数据已成为企业竞争的核心要素。为了应对日益增长的数据挑战&#xff0c;现代数据栈技术日益受到业界的关注。DataFunSummit 2023年现代数据栈技术峰会正是在这样的背景下应运而生&#xff0c;汇聚了全球数据领域的精英&#xff0c;共同探讨现…

Android应用开发data android:schemes标签的作用

文章目录 data android:schemesAndroidManifest.xml 中 <data> 元素的属性详解 data android:schemes 在 AndroidManifest.xml 文件中&#xff0c; 标签的作用是指定该应用可以处理的 URI 方案。 URI 是统一资源标识符&#xff0c;它是一种用于标识资源的标准方法。URI…

【三】【SQL Server】如何运用SQL Server中查询设计器通关数据库期末查询大题

数据库学生选择1122 数据库展示 course表展示 SC表展示 student表展示 数据库学生选课1122_1 第一题 第二题 第三题 第四题 第五题 数据库学生选课1122_2 第六题 第七题 第八题 第九题 第十题 结尾 最后&#xff0c;感谢您阅读我的文章&#xff0c;希望这些内容能够对您有所启…

列表吸顶分组之按首字母分组国家选区号

列表粘性分组之按首字母分组国家选区号 Android原生版本 直接先看UI图,效果如下 本来看起来也不难,我就想着上面常用区号那块不动,下面的列表滑动就行,但IOS说他滑动的时候上面也滑上去了,好吧,这也行;但最终效果做出来后,IOS滑动后会有按照国家名称首字母进行粘性分…

mysql从旧表 取出部分列并保存到新表几种方式介绍

在MySQL中&#xff0c;从旧表取出部分列并保存到新表有多种方式&#xff0c;主要包括以下几种&#xff1a; 1. 使用INSERT INTO ... SELECT语句&#xff1a; 这是最常用的方法。通过SELECT语句从旧表中选择需要的数据&#xff0c;然后使用INSERT INTO语句将数据…

cesium-切分地图

在cesium中只看想看到的部分地图&#xff0c;其他的隐藏。 做法如下 import {ArrowRight} from element-plus/icons-vue import {onMounted, ref, watch} from "vue"; import * as Cesium from "cesium"; import InitCesium from "../js/InitCesiumH…

快速了解Redis

Redis是什么&#xff1f; Redis是一个数据库&#xff0c;是一个跨平台的非关系型数据库&#xff0c;Redis完全开源&#xff0c;遵守BSD协议。它通过键值对(Key-Value)的形式存储数据。 它与mysql数据库有什么区别&#xff1f; redis通过键值对(Key-Value)的形式存储数据&…

【AI视野·今日Robot 机器人论文速览 第八十三期】Wed, 6 Mar 2024

AI视野今日CS.Robotics 机器人学论文速览 Wed, 6 Mar 2024 Totally 30 papers &#x1f449;上期速览✈更多精彩请移步主页 Interesting: &#x1f4da;SpaceHopper,外星探索多功能三足机器人 (from Robotic Systems Lab, ETH Zurich) Daily Robotics Papers A Safety-Criti…

《探索虚拟与现实的边界:VR与AR谁更能引领未来?》

引言 在当今数字时代&#xff0c;虚拟现实&#xff08;VR&#xff09;和增强现实&#xff08;AR&#xff09;技术正以惊人的速度发展&#xff0c;并逐渐渗透到我们的日常生活中。它们正在重新定义人与技术、人与环境之间的关系&#xff0c;同时也为各行各业带来了全新的可能性。…

LeetCode刷题---填充每个节点的下一个右侧节点指针 II

题解:LeetCode题解 解题思想&#xff1a; 通过创建辅助指针来解决该问题 当当前节点cur不为空的时候&#xff0c;创建辅助节点dummy&#xff0c;使其一直作为每一层的第一个节点的前一个节点。 创建辅助指针pre&#xff0c;pre初始指向dummy&#xff0c;之后通过pre来填充当前层…

JVM-整体结构原理深度解析

JVM定义 JVM是Java Virtual Machine&#xff08;Java虚拟机&#xff09;的缩写&#xff0c;JVM是一种用于计算设备的规范&#xff0c;它是一个虚构出来的计算机&#xff0c;是通过在实际的计算机上仿真模拟各种计算机功能来实现的。 引入Java语言虚拟机后&#xff0c;Java语言在…

Tensorflow2.0笔记 - 常见激活函数sigmoid,tanh和relu

本笔记主要记录常见的三个激活函数sigmoid&#xff0c;tanh和relu&#xff0c;关于激活函数详细的描述&#xff0c;可以参考这里&#xff1a; 详解激活函数&#xff08;Sigmoid/Tanh/ReLU/Leaky ReLu等&#xff09; - 知乎 import tensorflow as tf import numpy as nptf.__ve…

spring boot3token拦截器链的设计与实现

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途。 目录 写在前面 流程分析 需要清楚的 实现步骤 1.定义拦截器 2.创建拦截器链配置类 3.配置拦截器链顺序 4.配置拦截…

StarRocks实战——松果出行实时数仓实践

目录 一、背景 二、松果出行实时OLAP的演进 2.1 实时数仓1.0的架构 2.2 实时数仓2.0的架构 2.3 实时数仓3.0的架构 三、StarRocks 的引入 四、StarRocks在松果出行的应用 4.1 在订单业务中的应用 4.2 在车辆方向的应用 4.3 StarRocks “极速统一” 落地 4.4 StarRoc…