C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

目录

介绍

效果

模型信息

项目

代码

下载 


C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

介绍

模型出处github地址:https://github.com/SmilingWolf/SW-CV-ModelZoo

模型下载地址:https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input_1:0
tensor:Float[1, 448, 448, 3]
---------------------------------------------------------------

Outputs
-------------------------
name:predictions_sigmoid
tensor:Float[1, 9083]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array;

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[0];
                    input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1];
                    input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[2];
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            List<ScoreIndex> ltResult = new List<ScoreIndex>();
            ScoreIndex temp;
            for (int i = 0; i < result_array.Length; i++)
            {
                temp = new ScoreIndex(i, result_array[i]);
                ltResult.Add(temp);
            }

            //根据分数倒序排序,取前14个
            var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14);

            foreach (var item in SortedByScore)
            {
                sb.Append(class_names[item.Index] + ",");
            }
            sb.Length--; // 将长度减1来移除最后一个字符

            sb.AppendLine("");
            sb.AppendLine("------------------");
            
            // 只取分数最高的
            // float max = result_array.Max();
            // int maxIndex = Array.IndexOf(result_array, max);
            // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
           
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/model.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 448, 448, 3 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            List<string> str = new List<string>();
            StreamReader sr = new StreamReader("model/lable.txt");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                str.Add(line);
            }
            class_names = str.ToArray();
        }

    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array;

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[0];
                    input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1];
                    input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[2];
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            List<ScoreIndex> ltResult = new List<ScoreIndex>();
            ScoreIndex temp;
            for (int i = 0; i < result_array.Length; i++)
            {
                temp = new ScoreIndex(i, result_array[i]);
                ltResult.Add(temp);
            }

            //根据分数倒序排序,取前14个
            var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14);

            foreach (var item in SortedByScore)
            {
                sb.Append(class_names[item.Index] + ",");
            }
            sb.Length--; // 将长度减1来移除最后一个字符

            sb.AppendLine("");
            sb.AppendLine("------------------");
            
            // 只取分数最高的
            // float max = result_array.Max();
            // int maxIndex = Array.IndexOf(result_array, max);
            // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
           
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/model.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 448, 448, 3 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            List<string> str = new List<string>();
            StreamReader sr = new StreamReader("model/lable.txt");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                str.Add(line);
            }
            class_names = str.ToArray();
        }

    }
}

下载 

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/433450.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【开源物联网平台】FastBee使用EMQX5.0接入步骤

​&#x1f308; 个人主页&#xff1a;帐篷Li &#x1f525; 系列专栏&#xff1a;FastBee物联网开源项目 &#x1f4aa;&#x1f3fb; 专注于简单&#xff0c;易用&#xff0c;可拓展&#xff0c;低成本商业化的AIOT物联网解决方案 目录 一、将java内置mqtt broker切换成EMQX5…

电商之战:实时监控竞争对手战术,掌握市场先机!

淘宝天猫、拼多多、抖音、小红书等国内平台&#xff0c;甚至包括亚马逊、速卖通等跨境商家&#xff0c;在竞争如此激烈的电商平台&#xff0c;想要脱颖而出&#xff0c;打造店铺的差异化运营&#xff0c;通过对竞争对手甚至选品的监控可以更好地了解市场趋势和变化。 这有助于…

Jmeter正则表达式提取器

伙伴们是否遇到过以下的场景&#xff1a; 响应报文类似下面的这样 我们要使用phrase后面的其中一个值。 使用正则表达式提取后匹配出多少值&#xff0c;提取结果如下&#xff1a; 现在的问题是&#xff0c;如果我们要使用正则表达式提取后的&#xff1a;使用其中的第1个和第1…

前端H5动态背景登录页面(上)

最近一段时间看一些关于前端的东西&#xff0c;下面分享两个非常不错的前端动态背景登陆页面&#xff0c;还有几个等后面有时间了再整理。 1、彩色气泡登录页面 下面是源代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8…

互联网智慧工地源码,“互联网+建筑大数据”SaaS微服务架构,支持PC端、手机端、数据大屏端

智慧工地源码&#xff0c;支持多端展示&#xff08;PC端、手机端、平板端&#xff09;SaaS微服务架构&#xff0c;项目监管端&#xff0c;工地管理端源码 智能时代的风暴已经融入了我们生活的每个方面&#xff0c;智能手机、iPad等移动终端智能设备已经成为我们生活的必需品。智…

[ 云计算 | AWS ] ChatGPT 竞争对手 Claude 3 上线亚马逊云,实测表现超预期

文章目录 一、前言二、Claude 3 介绍以及相关测试细节三、在亚马逊云科技上体验 Claude 33.1 在 Amazon Bedrock 服务中配置 Claude 33.2 为聊天配置使用 Claude 3 模型3.3 Caude 3 Sonet 聊天体验 四、文末总结五、参考文献 一、前言 3月4号&#xff0c;Anthropic 发布了号称…

基于el-tree实现懒加载穿梭条

一、关键代码 <template><div><!-- 左侧待选列表 --><div class"left-box"><p>待选列表</p><el-input placeholder"输入关键词过滤" v-model"leftFilterText" clearable/><el-treeref"tree…

鱼哥赠书活动第12期:《基于React低代码平台开发》

鱼哥赠书活动第12期&#xff1a;《基于React低代码平台开发》 一、React与低代码平台的结合优势二、基于React的低代码平台开发挑战三、基于React的低代码平台开发实践四、未来展望内容简介&#xff1a;作者简介如何阅读&#xff1a;适合阅读人群&#xff1a;赠书抽奖规则:往期…

OpenText™ Migrate 软件, 结构化、可重复的工作负载迁移,停机时间几乎为零

OpenText™ Migrate 允许用户将任何规模和各种复杂度的物理、虚拟和云工作负载轻松地迁移到任何环境&#xff0c;并且停机时间几乎为零。微调自动化有助于协调流程的每个阶段。 为什么选择 OpenText Migrate&#xff1f; 1、满足您所有迁移需求的单一解决方案 OpenText Migra…

SqlServer中连续号及断号查询—附源码

效果如下图所示&#xff1a; SqlServer中连续号及断号查询SQL如下&#xff1a; --1.定义临时表 DECLARE TestTemp TABLE(TestCode NVARCHAR(50),TestNum INT )DECLARE DataTemp TABLE(TestCode NVARCHAR(50),TestNumStr NVARCHAR(100) )--2.插入测试数据 INSERT INTO TestT…

供应链优化:降本增效的核心战略——张驰咨询

在当今这个高度竞争的商业环境中&#xff0c;企业为了保持竞争力&#xff0c;不断寻求降低成本和提升效率的策略变得至关重要。有效的成本控制和效率提升不仅能够增加企业的利润率&#xff0c;还能增强其市场地位和客户满意度。以下是一些实用的策略&#xff0c;旨在帮助企业实…

2024春招面试,2024年阿里Android高级面试题分享

前言 作为一个3-5年的Android工程师&#xff0c;我们经常会遇到这些瓶颈&#xff1a; 1.技术视野窄 长期在小型软件公司&#xff0c;外包公司工作&#xff0c;技术视野被限制的太厉害 2.薪资提升难 初中级Android岗位薪资上升空间有限&#xff0c;基本上你想拿15k以上&#…

android开发教程百度网盘,高并发系统基础篇

展望未来 操作系统 移动操作系统的演变过程&#xff0c;从按键交互的塞班功能机到触摸屏交互的Android/IOS智能机&#xff0c;从小屏幕手机到全面屏、刘海屏、水滴屏。任何系统无非干两件事&#xff1a;输入和输出&#xff0c;接收到外部输入信号后经过操作系统处理后输出信息…

【前端系列】vue

这里写目录标题 一、Vue简介1.1 主流前端框架/库简介 二、下载和安装Vue2.1 下载2.2 安装完成后&#xff0c;检查2.3创建全局安装目录和缓存日志目录2.4 为了下载包快速&#xff0c;改源为淘宝镜像2.5 查看npm配置修改是否成功 三、配置环境变量环境变量—用户变量—选中Path—…

字符指针数组指针的理解

1.字符指针&#xff1a;也就是存放字符地址的指针&#xff08;和整型指针差不多&#xff09; 代码如下&#xff1a; int main() {char ch w;char *pc &ch;*pc w;return 0; } 2.数组指针&#xff1a;也就是指向数组的指针 2.1数组指针如何初始化 int main() {int ar…

学习大数据,所必需的java基础(8)

文章目录 字符缓冲流字符缓冲输出流 _Buffered和Writer字符缓冲输入流字符缓冲流练习 转换流字符编码字符集转换流转换流_OutputStreamWriter序列流和反序列流的介绍序列化流_ObjectOutputStream反序列化_ObjectInputStream不想被序列化操作反序列化时出现的问题以及分析和解决…

低代码平台,面向业务or技术?

低代码开发平台是一种新兴的技术趋势&#xff0c;它为企业提供了快速、高效地开发应用程序的方法。随着数字化转型的加速&#xff0c;越来越多的企业开始关注低代码开发平台&#xff0c;并在实际应用中取得了一定的成果。 作为使用者来说&#xff0c;面对市场上形形色色的低代…

力扣hot100:438.找到字符串中所有字母异位词(滑动窗口)

26个字符&#xff0c;我复制怎么了&#xff1f;26个字符我比较个数怎么了&#xff1f; 顶多时间复杂度*26 本题用固定窗口大小的滑动窗口每次比较包含26个元素的数组次数&#xff0c;最容易写。 动态窗口大小哈希表存数值&#xff08;双指针差值&#xff09;难想难写。 一、动态…

【随笔】yt-dlp使用cookie完成身份认证 python yt-dlp库常用参数

文章目录 一、提取cookies1.1 不提取出来1.2 提取为单独文件1.2 使用cookies 二、yt-dlp 用法&#xff08;python库&#xff09;基本参数视频参数播放列表参数高级参数 以前用yt-dlp做的软件&#xff1a; 但是部分网站需要在登录状态才能获取更高格式的内容。 比如&#xff…

dolphinscheduler试用(一)(边用边修bug。。。。create tenant error)

&#xff08;作者&#xff1a;陈玓玏&#xff09; 前提&#xff1a;部署好了dolphinscheduler&#xff0c;部署篇见https://blog.csdn.net/weixin_39750084/article/details/136306890?spm1001.2014.3001.5501 官方文档见&#xff1a;https://dolphinscheduler.apache.org/…