C语言数据结构与算法——深度、广度优先搜索(DFS、BFS)

目录

一、深度优先搜索(Depth-First-Search 简称:DFS)

无向图的深度优先搜索

有向图的深度优先搜索

二、广度优先搜索(Breadth-First-Search 简称:BFS)

无向图的广度优先搜索

有向图的广度优先搜索

深度优先搜索(Depth-First Search,DFS)和广度优先搜索(Breadth-First Search,BFS)是两种常见的图遍历算法,它们在C语言中被广泛应用于解决各种数据结构和算法问题。这两种搜索算法都用于遍历图或树中的节点,以便查找特定的目标或执行其他相关任务。

一、深度优先搜索(Depth-First-Search 简称:DFS)

图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。

它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

显然,深度优先搜索是一个递归的过程。

无向图的深度优先搜索

1.1 遍历过程:

  (1)从图中某个顶点v出发,访问v。

  (2)找出刚才第一个被顶点访问的邻接点。访问该顶点。以这个顶点为新的顶点,重复此步骤,直到访问过的顶点没有未被访问过的顶点为止。

  (3)返回到步骤(2)中的被顶点v访问的,且还没被访问的邻接点,找出该点的下一个未被访问的邻接点,访问该顶点。

  (4)重复(2) (3) 直到每个点都被访问过,遍历结束。

例无权图:

第1步:访问A。

第2步:访问(A的邻接点)B。  在第1步访问A之后,接下来应该访问的是A的邻接点,即"B、F、E"中的一个。但在本文的实现中,顶点ABCDEFG是按照顺序存储,B在"D、F和E"的前面,因此,先访问B。

第3步:访问(B的邻接点)C。在第2步访问B之后,接下来应该访问B的邻接点,即"F、D、C"中一个(A已经被访问过,就不算在内)。而由于C在D、F之前,先访问C。

第4步:访问(C的邻接点)D。在第3步访问C之后,接下来应该访问C的邻接点,即D。(B已经被访问过,就不算在内)。

第5步:访问(D的邻接点)E。

第6步:访问(E的邻接点)F。

故遍历结果为 A->B->C->D->E->F

有向图的深度优先搜索

第1步:访问A。

第2步:访问B。在访问A之后,接下来访问A的出边的另一个顶点,即顶点B。

第3步:访问C。 在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。

第4步:访问E。接下来访问C的出边的另一个顶点,即顶点E。

第5步:访问D。接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。

第6步:访问F。接下应该回溯"访问A的出边的另一个顶点F"。

第7步:访问G。

故遍历结果为A->b->c->E->D->F->G

二、广度优先搜索(Breadth-First-Search 简称:BFS)

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

无向图的广度优先搜索

第1步:访问A。
第2步:依次访问B,E,F。
    在访问了A之后,接下来访问A的邻接点。顶点ABCDEFG按照顺序存储,B在"E和F"的前面,因此,先访问B。再访问完B之后,再依次访问E,F。
第3步:依次访问C,D。
    在第2步访问完B,E,F之后,再依次访问它们的邻接点。首先访问B的邻接点C,再访问E的邻接点D。

因此访问顺序是:A->B->E->F->C->D

有向图的广度优先搜索

第1步:访问A。
第2步:访问B。
第3步:依次访问C,E,F。
    在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。顶点ABCDEFG按照顺序存储,因此会先访问C,再依次访问E,F。
第4步:依次访问D,G。
    在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A->B->C->E->F->D->G

邻接矩阵图表示的"无向图"

/**
 * C: 邻接矩阵图表示的"无向图(Matrix Undirected Graph)"
 *
 * @author skywang
 * @date 2014/04/18
 */

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX 100
#define isLetter(a)  ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)  (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(Graph g, char ch)
{
    int i;
    for(i=0; i<g.vexnum; i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

    do {
        ch = getchar();
    } while(!isLetter(ch));

    return ch;
}

/*
 * 创建图(自己输入)
 */
Graph* create_graph()
{
    char c1, c2;
    int v, e;
    int i, p1, p2;
    Graph* pG;
    
    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!\n");
        return NULL;
    }
    
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i] = read_char();
    }

    // 初始化"边"
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        printf("edge(%d):", i);
        c1 = read_char();
        c2 = read_char();

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);
        if (p1==-1 || p2==-1)
        {
            printf("input error: invalid edge!\n");
            free(pG);
            return NULL;
        }

        pG->matrix[p1][p2] = 1;
        pG->matrix[p2][p1] = 1;
    }

    return pG;
}

/*
 * 创建图(用已提供的矩阵)
 */
Graph* create_example_graph()
{
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    char edges[][2] = {
        {'A', 'C'}, 
        {'A', 'D'}, 
        {'A', 'F'}, 
        {'B', 'C'}, 
        {'C', 'D'}, 
        {'E', 'G'}, 
        {'F', 'G'}}; 
    int vlen = LENGTH(vexs);
    int elen = LENGTH(edges);
    int i, p1, p2;
    Graph* pG;
    
    // 输入"顶点数"和"边数"
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = vlen;
    pG->edgnum = elen;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        pG->vexs[i] = vexs[i];
    }

    // 初始化"边"
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        p1 = get_position(*pG, edges[i][0]);
        p2 = get_position(*pG, edges[i][1]);

        pG->matrix[p1][p2] = 1;
        pG->matrix[p2][p1] = 1;
    }

    return pG;
}

/*
 * 返回顶点v的第一个邻接顶点的索引,失败则返回-1
 */
static int first_vertex(Graph G, int v)
{
    int i;

    if (v<0 || v>(G.vexnum-1))
        return -1;

    for (i = 0; i < G.vexnum; i++)
        if (G.matrix[v][i] == 1)
            return i;

    return -1;
}

/*
 * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
 */
static int next_vertix(Graph G, int v, int w)
{
    int i;

    if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1))
        return -1;

    for (i = w + 1; i < G.vexnum; i++)
        if (G.matrix[v][i] == 1)
            return i;

    return -1;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(Graph G, int i, int *visited)
{                                   
    int w; 

    visited[i] = 1;
    printf("%c ", G.vexs[i]);
    // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
    for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w))
    {
        if (!visited[w])
            DFS(G, w, visited);
    }
       
}

/*
 * 深度优先搜索遍历图
 */
void DFSTraverse(Graph G)
{
    int i;
    int visited[MAX];       // 顶点访问标记

    // 初始化所有顶点都没有被访问
    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("DFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        //printf("\n== LOOP(%d)\n", i);
        if (!visited[i])
            DFS(G, i, visited);
    }
    printf("\n");
}

/*
 * 广度优先搜索(类似于树的层次遍历)
 */
void BFS(Graph G)
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点访问标记
    int i, j, k;

    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("BFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            printf("%c ", G.vexs[i]);
            queue[rear++] = i;  // 入队列
        }
        while (head != rear) 
        {
            j = queue[head++];  // 出队列
            for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点
            {
                if (!visited[k])
                {
                    visited[k] = 1;
                    printf("%c ", G.vexs[k]);
                    queue[rear++] = k;
                }
            }
        }
    }
    printf("\n");
}

/*
 * 打印矩阵队列图
 */
void print_graph(Graph G)
{
    int i,j;

    printf("Martix Graph:\n");
    for (i = 0; i < G.vexnum; i++)
    {
        for (j = 0; j < G.vexnum; j++)
            printf("%d ", G.matrix[i][j]);
        printf("\n");
    }
}

void main()
{
    Graph* pG;

    // 自定义"图"(输入矩阵队列)
    //pG = create_graph();
    // 采用已有的"图"
    pG = create_example_graph();

    print_graph(*pG);       // 打印图
    DFSTraverse(*pG);       // 深度优先遍历
    BFS(*pG);               // 广度优先遍历
}

邻接表表示的"无向图"

/**
 * C: 邻接表表示的"无向图(List Undirected Graph)"
 *
 * @author skywang
 * @date 2014/04/18
 */

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX 100
#define isLetter(a)  ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)  (sizeof(a)/sizeof(a[0]))

// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
    int ivex;                   // 该边所指向的顶点的位置
    struct _ENode *next_edge;   // 指向下一条弧的指针
}ENode, *PENode;

// 邻接表中表的顶点
typedef struct _VNode
{
    char data;              // 顶点信息
    ENode *first_edge;      // 指向第一条依附该顶点的弧
}VNode;

// 邻接表
typedef struct _LGraph
{
    int vexnum;             // 图的顶点的数目
    int edgnum;             // 图的边的数目
    VNode vexs[MAX];
}LGraph;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(LGraph g, char ch)
{
    int i;
    for(i=0; i<g.vexnum; i++)
        if(g.vexs[i].data==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

    do {
        ch = getchar();
    } while(!isLetter(ch));

    return ch;
}

/*
 * 将node链接到list的末尾
 */
static void link_last(ENode *list, ENode *node)
{
    ENode *p = list;

    while(p->next_edge)
        p = p->next_edge;
    p->next_edge = node;
}

/*
 * 创建邻接表对应的图(自己输入)
 */
LGraph* create_lgraph()
{
    char c1, c2;
    int v, e;
    int i, p1, p2;
    ENode *node1, *node2;
    LGraph* pG;

    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!\n");
        return NULL;
    }
 
    if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i].data = read_char();
        pG->vexs[i].first_edge = NULL;
    }

    // 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        printf("edge(%d): ", i);
        c1 = read_char();
        c2 = read_char();

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);

        // 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex = p2;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
          pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
        // 初始化node2
        node2 = (ENode*)malloc(sizeof(ENode));
        node2->ivex = p1;
        // 将node2链接到"p2所在链表的末尾"
        if(pG->vexs[p2].first_edge == NULL)
          pG->vexs[p2].first_edge = node2;
        else
            link_last(pG->vexs[p2].first_edge, node2);
    }

    return pG;
}

/*
 * 创建邻接表对应的图(用已提供的数据)
 */
LGraph* create_example_lgraph()
{
    char c1, c2;
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    char edges[][2] = {
        {'A', 'C'}, 
        {'A', 'D'}, 
        {'A', 'F'}, 
        {'B', 'C'}, 
        {'C', 'D'}, 
        {'E', 'G'}, 
        {'F', 'G'}}; 
    int vlen = LENGTH(vexs);
    int elen = LENGTH(edges);
    int i, p1, p2;
    ENode *node1, *node2;
    LGraph* pG;


    if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = vlen;
    pG->edgnum = elen;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        pG->vexs[i].data = vexs[i];
        pG->vexs[i].first_edge = NULL;
    }

    // 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        c1 = edges[i][0];
        c2 = edges[i][1];

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);

        // 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex = p2;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
          pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
        // 初始化node2
        node2 = (ENode*)malloc(sizeof(ENode));
        node2->ivex = p1;
        // 将node2链接到"p2所在链表的末尾"
        if(pG->vexs[p2].first_edge == NULL)
          pG->vexs[p2].first_edge = node2;
        else
            link_last(pG->vexs[p2].first_edge, node2);
    }

    return pG;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(LGraph G, int i, int *visited)
{
    int w;
    ENode *node;

    visited[i] = 1;
    printf("%c ", G.vexs[i].data);
    node = G.vexs[i].first_edge;
    while (node != NULL)
    {
        if (!visited[node->ivex])
            DFS(G, node->ivex, visited);
        node = node->next_edge;
    }
}

/*
 * 深度优先搜索遍历图
 */
void DFSTraverse(LGraph G)
{
    int i;
    int visited[MAX];       // 顶点访问标记

    // 初始化所有顶点都没有被访问
    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("DFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
            DFS(G, i, visited);
    }
    printf("\n");
}

/*
 * 广度优先搜索(类似于树的层次遍历)
 */
void BFS(LGraph G)
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点访问标记
    int i, j, k;
    ENode *node;

    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("BFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            printf("%c ", G.vexs[i].data);
            queue[rear++] = i;  // 入队列
        }
        while (head != rear) 
        {
            j = queue[head++];  // 出队列
            node = G.vexs[j].first_edge;
            while (node != NULL)
            {
                k = node->ivex;
                if (!visited[k])
                {
                    visited[k] = 1;
                    printf("%c ", G.vexs[k].data);
                    queue[rear++] = k;
                }
                node = node->next_edge;
            }
        }
    }
    printf("\n");
}

/*
 * 打印邻接表图
 */
void print_lgraph(LGraph G)
{
    int i,j;
    ENode *node;

    printf("List Graph:\n");
    for (i = 0; i < G.vexnum; i++)
    {
        printf("%d(%c): ", i, G.vexs[i].data);
        node = G.vexs[i].first_edge;
        while (node != NULL)
        {
            printf("%d(%c) ", node->ivex, G.vexs[node->ivex].data);
            node = node->next_edge;
        }
        printf("\n");
    }
}

void main()
{
    LGraph* pG;

    // 自定义"图"(自己输入数据)
    //pG = create_lgraph();
    // 采用已有的"图"
    pG = create_example_lgraph();

    // 打印图
    print_lgraph(*pG);
    DFSTraverse(*pG);
    BFS(*pG);
}

邻接矩阵表示的"有向图"

/**
 * C: 邻接矩阵表示的"有向图(Matrix Directed Graph)"
 *
 * @author skywang
 * @date 2014/04/18
 */

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX 100
#define isLetter(a)  ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)  (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(Graph g, char ch)
{
    int i;
    for(i=0; i<g.vexnum; i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

    do {
        ch = getchar();
    } while(!isLetter(ch));

    return ch;
}

/*
 * 创建图(自己输入)
 */
Graph* create_graph()
{
    char c1, c2;
    int v, e;
    int i, p1, p2;
    Graph* pG;
    
    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!\n");
        return NULL;
    }
    
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i] = read_char();
    }

    // 初始化"边"
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        printf("edge(%d):", i);
        c1 = read_char();
        c2 = read_char();

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);
        if (p1==-1 || p2==-1)
        {
            printf("input error: invalid edge!\n");
            free(pG);
            return NULL;
        }

        pG->matrix[p1][p2] = 1;
    }

    return pG;
}

/*
 * 创建图(用已提供的矩阵)
 */
Graph* create_example_graph()
{
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    char edges[][2] = {
        {'A', 'B'}, 
        {'B', 'C'}, 
        {'B', 'E'}, 
        {'B', 'F'}, 
        {'C', 'E'}, 
        {'D', 'C'}, 
        {'E', 'B'}, 
        {'E', 'D'}, 
        {'F', 'G'}}; 
    int vlen = LENGTH(vexs);
    int elen = LENGTH(edges);
    int i, p1, p2;
    Graph* pG;
    
    // 输入"顶点数"和"边数"
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = vlen;
    pG->edgnum = elen;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        pG->vexs[i] = vexs[i];
    }

    // 初始化"边"
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        p1 = get_position(*pG, edges[i][0]);
        p2 = get_position(*pG, edges[i][1]);

        pG->matrix[p1][p2] = 1;
    }

    return pG;
}

/*
 * 返回顶点v的第一个邻接顶点的索引,失败则返回-1
 */
static int first_vertex(Graph G, int v)
{
    int i;

    if (v<0 || v>(G.vexnum-1))
        return -1;

    for (i = 0; i < G.vexnum; i++)
        if (G.matrix[v][i] == 1)
            return i;

    return -1;
}

/*
 * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
 */
static int next_vertix(Graph G, int v, int w)
{
    int i;

    if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1))
        return -1;

    for (i = w + 1; i < G.vexnum; i++)
        if (G.matrix[v][i] == 1)
            return i;

    return -1;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(Graph G, int i, int *visited)
{                                   
    int w; 

    visited[i] = 1;
    printf("%c ", G.vexs[i]);
    // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
    for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w))
    {
        if (!visited[w])
            DFS(G, w, visited);
    }
       
}

/*
 * 深度优先搜索遍历图
 */
void DFSTraverse(Graph G)
{
    int i;
    int visited[MAX];       // 顶点访问标记

    // 初始化所有顶点都没有被访问
    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("DFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        //printf("\n== LOOP(%d)\n", i);
        if (!visited[i])
            DFS(G, i, visited);
    }
    printf("\n");
}

/*
 * 广度优先搜索(类似于树的层次遍历)
 */
void BFS(Graph G)
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点访问标记
    int i, j, k;

    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("BFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            printf("%c ", G.vexs[i]);
            queue[rear++] = i;  // 入队列
        }
        while (head != rear) 
        {
            j = queue[head++];  // 出队列
            for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点
            {
                if (!visited[k])
                {
                    visited[k] = 1;
                    printf("%c ", G.vexs[k]);
                    queue[rear++] = k;
                }
            }
        }
    }
    printf("\n");
}

/*
 * 打印矩阵队列图
 */
void print_graph(Graph G)
{
    int i,j;

    printf("Martix Graph:\n");
    for (i = 0; i < G.vexnum; i++)
    {
        for (j = 0; j < G.vexnum; j++)
            printf("%d ", G.matrix[i][j]);
        printf("\n");
    }
}

void main()
{
    Graph* pG;

    // 自定义"图"(输入矩阵队列)
    //pG = create_graph();
    // 采用已有的"图"
    pG = create_example_graph();

    print_graph(*pG);       // 打印图
    DFSTraverse(*pG);       // 深度优先遍历
    BFS(*pG);               // 广度优先遍历
}

邻接表表示的"有向图"

/**
 * C: 邻接表表示的"有向图(List Directed Graph)"
 *
 * @author skywang
 * @date 2014/04/18
 */

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX 100
#define isLetter(a)  ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)  (sizeof(a)/sizeof(a[0]))

// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
    int ivex;                   // 该边所指向的顶点的位置
    struct _ENode *next_edge;   // 指向下一条弧的指针
}ENode, *PENode;

// 邻接表中表的顶点
typedef struct _VNode
{
    char data;              // 顶点信息
    ENode *first_edge;      // 指向第一条依附该顶点的弧
}VNode;

// 邻接表
typedef struct _LGraph
{
    int vexnum;             // 图的顶点的数目
    int edgnum;             // 图的边的数目
    VNode vexs[MAX];
}LGraph;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(LGraph g, char ch)
{
    int i;
    for(i=0; i<g.vexnum; i++)
        if(g.vexs[i].data==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

    do {
        ch = getchar();
    } while(!isLetter(ch));

    return ch;
}

/*
 * 将node链接到list的末尾
 */
static void link_last(ENode *list, ENode *node)
{
    ENode *p = list;

    while(p->next_edge)
        p = p->next_edge;
    p->next_edge = node;
}

/*
 * 创建邻接表对应的图(自己输入)
 */
LGraph* create_lgraph()
{
    char c1, c2;
    int v, e;
    int i, p1, p2;
    ENode *node1, *node2;
    LGraph* pG;

    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!\n");
        return NULL;
    }
 
    if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i].data = read_char();
        pG->vexs[i].first_edge = NULL;
    }

    // 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        printf("edge(%d): ", i);
        c1 = read_char();
        c2 = read_char();

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);
        // 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex             = p2;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
          pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
    }

    return pG;
}

/*
 * 创建邻接表对应的图(用已提供的数据)
 */
LGraph* create_example_lgraph()
{
    char c1, c2;
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    char edges[][2] = {
        {'A', 'B'}, 
        {'B', 'C'}, 
        {'B', 'E'}, 
        {'B', 'F'}, 
        {'C', 'E'}, 
        {'D', 'C'}, 
        {'E', 'B'}, 
        {'E', 'D'}, 
        {'F', 'G'}}; 
    int vlen = LENGTH(vexs);
    int elen = LENGTH(edges);
    int i, p1, p2;
    ENode *node1, *node2;
    LGraph* pG;


    if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = vlen;
    pG->edgnum = elen;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        pG->vexs[i].data = vexs[i];
        pG->vexs[i].first_edge = NULL;
    }

    // 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点和结束顶点
        c1 = edges[i][0];
        c2 = edges[i][1];

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);
        // 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex = p2;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
          pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
    }

    return pG;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(LGraph G, int i, int *visited)
{
    int w;
    ENode *node;

    visited[i] = 1;
    printf("%c ", G.vexs[i].data);
    node = G.vexs[i].first_edge;
    while (node != NULL)
    {
        if (!visited[node->ivex])
            DFS(G, node->ivex, visited);
        node = node->next_edge;
    }
}

/*
 * 深度优先搜索遍历图
 */
void DFSTraverse(LGraph G)
{
    int i;
    int visited[MAX];       // 顶点访问标记

    // 初始化所有顶点都没有被访问
    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("DFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
            DFS(G, i, visited);
    }
    printf("\n");
}

/*
 * 广度优先搜索(类似于树的层次遍历)
 */
void BFS(LGraph G)
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点访问标记
    int i, j, k;
    ENode *node;

    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("BFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            printf("%c ", G.vexs[i].data);
            queue[rear++] = i;  // 入队列
        }
        while (head != rear) 
        {
            j = queue[head++];  // 出队列
            node = G.vexs[j].first_edge;
            while (node != NULL)
            {
                k = node->ivex;
                if (!visited[k])
                {
                    visited[k] = 1;
                    printf("%c ", G.vexs[k].data);
                    queue[rear++] = k;
                }
                node = node->next_edge;
            }
        }
    }
    printf("\n");
}

/*
 * 打印邻接表图
 */
void print_lgraph(LGraph G)
{
    int i,j;
    ENode *node;

    printf("List Graph:\n");
    for (i = 0; i < G.vexnum; i++)
    {
        printf("%d(%c): ", i, G.vexs[i].data);
        node = G.vexs[i].first_edge;
        while (node != NULL)
        {
            printf("%d(%c) ", node->ivex, G.vexs[node->ivex].data);
            node = node->next_edge;
        }
        printf("\n");
    }
}

void main()
{
    LGraph* pG;

    // 自定义"图"(自己输入数据)
    //pG = create_lgraph();
    // 采用已有的"图"
    pG = create_example_lgraph();

    // 打印图
    print_lgraph(*pG);
    DFSTraverse(*pG);
    BFS(*pG);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/431942.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

市场复盘总结 20240305

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 二进三&#xff1a; 进级率中 25% 最常用的…

CSS字体样式值,html注释标签

突破困境&#xff1a; 1. 提升学历 前端找工作&#xff0c;学历重要吗&#xff1f; 重要。谁要是告诉你不重要那一定是在骗你。现实情况是大专吃紧&#xff0c;本科够用&#xff0c;硕士占优&#xff0c;大专以下找到工作靠运气和真实力。 学历是硬伤&#xff0c;已经毕业的你…

(黑马出品_02)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

&#xff08;黑马出品_02&#xff09;SpringCloudRabbitMQDockerRedis搜索分布式 微服务技术栈治理 今日目标1.Nacos配置管理1.1.统一配置管理1.1.1.在nacos中添加配置文件1.1.2.从微服务拉取配置 1.2.配置热更新1.2.1.方式一1.2.2.方式二 1.3.配…

【Java设计模式】六、代理模式:静态代理、JDK + CGLIB动态代理

文章目录 1、代理对象2、代理模式结构3、静态代理4、JDK动态代理5、JDK动态代理的原理6、CGLIB动态代理7、三种代理的对比8、代理模式的总结 结构型设计是将类或者对象按某种布局&#xff08;继承机制、组合聚合&#xff09;来组成更大结构。包括七种&#xff1a; * 代理模式 …

代码随想录第51天|● 309.最佳买卖股票时机含冷冻期 ● 714.买卖股票的最佳时机含手续费 ●总结

文章目录 ● 309.最佳买卖股票时机含冷冻期思路代码 ● 714.买卖股票的最佳时机含手续费思路&#xff1a; ●总结 ● 309.最佳买卖股票时机含冷冻期 思路 代码 class Solution {public int maxProfit(int[] prices) {// 0.买入状态-(持有)// 1.保持卖出股票的状态// 2.今天…

JVM运行时数据区——堆

文章目录 1、堆的核心概述1.1、JVM实例与堆内存的对应关系1.2、堆与栈的关系1.3、JVM堆空间划分 2、设置堆内存大小与内存溢出2.1、设置堆内存大小2.2、内存溢出案例 3、新生代与老年代4、图解对象分配过程5、Minor GC、Major GC、Full GC5.1、GC的分类5.2、分代式GC策略的触发…

Sora:AI视频模型的无限可能与挑战

随着人工智能技术的突飞猛进&#xff0c;AI视频模型已成为科技领域的新焦点。OpenAI推出的AI视频模型Sora&#xff0c;凭借其卓越的技术性能和前瞻性&#xff0c;为AI视频领域的发展揭开了新的篇章。本文将从技术解析、应用场景、未来展望、伦理与创意以及用户体验与互动五个方…

【python基础学习09课_装饰器、模块、文件】

一、项目的日志 1、日志意义与级别 1、日志的意义&#xff1a;项目的日志 -- 开发编写的&#xff0c;日志记录 -- 测试就是去查看日志信息&#xff08;为了协助我们进行问题的定位&#xff09; 可以根据日志&#xff0c;看是哪个应用的哪台机器&#xff0c;出现了什么问题&…

Scala 之舞:林浩然与杨凌芸的 IDEA 冒险

Scala 之舞&#xff1a;林浩然与杨凌芸的 IDEA 冒险 The Dance of Scala: The IDEA Adventure of Lin Haoran and Yang Lingyun 在那个阳光明媚的日子里&#xff0c;林浩然如同一位英勇的探险家&#xff0c;踏入了 Scala 的 IntelliJ IDEA 开发环境的奇妙领域&#xff0c;他带着…

day7 字符数组

1&#xff1a;输入一个字符串&#xff0c;实现单词逆置 输入:"good good study" 输出&#xff1a;"study good good" 6 //单词逆置7 // good good study8 // study good good9 10 //整体逆置11 char str[50]"good good stu…

springboot集成logback打印彩色日志

一、logback介绍 Logback是由log4j创始人设计的另一个开源日志组件,官方网站&#xff1a; logback.qos.ch。它当前分为以下三个模块&#xff1a; logback-core&#xff1a;其它两个模块的基础模块。logback-classic&#xff1a;它是log4j的一个改良版本&#xff0c;同时它完整实…

C++基于多设计模式下的同步异步日志系统day6

C基于多设计模式下的同步&异步日志系统day6 &#x1f4df;作者主页&#xff1a;慢热的陕西人 &#x1f334;专栏链接&#xff1a;C基于多设计模式下的同步&异步日志系统 &#x1f4e3;欢迎各位大佬&#x1f44d;点赞&#x1f525;关注&#x1f693;收藏&#xff0c;&am…

云手机运行在云端?安全性有保障吗

随着云计算技术的不断发展&#xff0c;云手机作为一种新兴的移动终端形态&#xff0c;逐渐成为人们关注的焦点。然而&#xff0c;对于许多人来说&#xff0c;云手机 是一个相对陌生的概念&#xff0c;安全性成为了他们最为关心的问题之一。本文将就云手机运行在云端的特点以及其…

JWT身份验证

在实际项目中一般会使用jwt鉴权方式。 JWT知识点 jwt&#xff0c;全称json web token &#xff0c;JSON Web令牌是一种开放的行业标准RFC 7519方法&#xff0c;用于在两方安全地表示声明。具体网上有许多文章介绍&#xff0c;这里做简单的使用。 1.数据结构 JSON Web Token…

#include<ros/ros.h>头文件报错

快捷键 ctrl shift B 调用编译&#xff0c;选择:catkin_make:build&#xff09;(要先在vscode上添加扩展&#xff1a;ros) 可以点击配置设置为默认&#xff0c;修改.vscode/tasks.json 文件 修改.vscode/tasks.json 文件&#xff0c;否则ros.h头文件会报错 内容修改为以下内…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:拖拽控制)

设置组件是否可以响应拖拽事件。 说明&#xff1a; 从API Version 10开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 ArkUI框架对以下组件实现了默认的拖拽能力&#xff0c;支持对数据的拖出或拖入响应&#xff0c;开发者只需要将这些组件…

残差网宽度残差网

目录 from # 从ResNet说起 # 更深的网络 # 理解shortcut # WRN之宽度残差块 # 退化现象 from WideResNet(宽残差网络)算法解析-鸟类识别分类-Pytorch实战-CSDN博客 # 前言 ResNet可以训练出更深的CNN模型ResNet模型的核心是建立前面层和后面层之间“短路链接”&#xff…

【Proteus仿真】【Arduino单片机】坐姿矫正提醒器设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器&#xff0c;使用LCD1602液晶显示模块、HC-SR04超声波模块、蜂鸣器、按键、人体红外传感器等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD1602显示超声…

java——2024-03-03

String类的对象能被修改吗&#xff1f;如果不能需要用什么修改&#xff1f;StringBuilder和StringBuffer的区别&#xff1f;equals和区别谈谈对面向对象的理解重载和重写的区别说一下ArrayList&#xff0c;LinkedList底层实现以及区别什么是哈希冲突&#xff1f;hashMap和conCu…

tomcat动静分离和负载均衡

目录 引言 1.实验环境搭建 2.部署Nginx服务器及配置静态页面Web服务 3.部署Tomcat服务及配置动态页面Web服务 4.实验验收 动态页面 静态页面 引言 tomcat服务既可以处理动态页面&#xff0c;也可以处理静态页面&#xff1b;但其处理静态页面的速度远远不如nginx和apache…