初识Hive

官网地址为:

Design - Apache Hive - Apache Software Foundation

一、架构

先来看下官网给的图:

b89f6c837ed54a8db666fb0ee48f9b02.png

图上显示了Hive的主要组件及其与Hadoop的交互。Hive的主要组件有:

UI:

        用户向系统提交查询和其他操作的用户界面。截至2011年,该系统具有命令行界面,并且正在开发基于web的GUI。

Driver:

        驱动程序,接收查询的组件。该组件实现了会话句柄的概念,并提供了基于JDBC/ODBC接口建模的执行和获取API。

Compiler:

       编译器, 该组件解析查询,对不同的查询块和查询表达式进行语义分析,并最终借助从元存储中查找的表和分区元数据生成执行计划。

Metastore:

        元数据存储,存储仓库中各种表和分区的所有结构信息的组件,包括列和列类型信息、读写数据所需的序列化程序和反序列化程序以及存储数据的相应HDFS文件。

Execution Engine:

        执行引擎,执行编译器创建的执行计划的组件。该计划是一个分阶段的DAG。执行引擎管理计划的这些不同阶段之间的依赖关系,并在适当的系统组件上执行这些阶段。

此外图中还展示了一个典型的查询是如何在系统中流动的

1、UI调用驱动程序的执行接口

2、驱动程序为查询创建会话句柄,并将查询发送给编译器以生成执行计划

3、4、编译器从元存储中获取必要的元数据

5、利用元数据对查询树中的表达式进行类型检查,并根据查询谓词修剪分区。编译器生成计划,计划是阶段的DAG,每个阶段要么是Map/Reduce作业,要么是元数据操作,要么是HDFS上的操作。对于Map/Reduce阶段,计划包含map运算符树(在MapTask上执行的运算符树)和reduce运算符树(用于需要ReduceTask的操作)。

6、6.1、6.2、6.3:执行引擎将这些阶段提交给适当的组件,如果是元数据操作(DDL)就直接提交给元数据,如果是数据操作(DML)就解析成任务提交给Hadoop,当然也可以输入命令直接操作HDFS上的数据

在每个任务 (mapper/reducer) 中,与表或中间输出相关联的解串器用于从HDFS文件中读取行,并且这些行通过相关联的运算符树传递。一旦生成输出,就会通过序列化程序将其写入临时HDFS文件(如果操作不需要reduce,则会在map中发生这种情况)。临时文件用于为计划的后续映射/还原阶段提供数据。对于DML操作,最终的临时文件将移动到表的位置。此方案用于确保不读取脏数据(文件重命名是HDFS中的原子操作)。

7、8、9:对于查询,执行引擎直接从HDFS读取临时文件的内容,作为来自驱动程序的获取调用的一部分

二、数据模型

Hive中的数据被组织为:

Tables(表):

        这些类似于关系数据库中的表。表可以进行筛选、投影、联接和联合。此外,表的所有数据都存储在HDFS中的一个目录中。Hive还支持外部表的概念,其中可以通过向表创建DDL提供适当的位置,在HDFS中预先存在的文件或目录上创建表。表中的行被组织成类型列,类似于关系数据库。

Partitions(分区):

        每个表可以有一个或多个分区键,用于确定数据的存储方式,例如,具有日期分区列dt的表T具有存储在HDFS中的<Table location>/dt=<date>目录中的特定日期的数据文件。分区允许系统根据查询谓词修剪要检查的数据,例如,对T中满足谓词T的行感兴趣的查询。dt=“2008-09-01”只需查看HDFS中<table location>/dt=2008-09-01/目录中的文件。

Buckets(桶):

        每个分区中的数据又可以基于表中的列的哈希被划分为桶。每个bucket都作为一个文件存储在分区目录中。Bucketing允许系统有效地评估依赖于数据样本的查询(这些查询使用表上的sample子句)。

下面我们来创建一个有桶的分区表,并给些示例数据,看看它在HDFS上是怎么存储的

#创建分区表
create table if not exists ods.personal_info
(id int comment 'id',
name string comment '姓名',
age string comment '年龄' ,
sex string comment '性别:1男0女2其他' ,
telno string comment '手机号' )
partitioned by(dt string comment '时间(yyyyMMdd)')
row format delimited
fields terminated by ','
stored as textfile
;
#创建中间表
#因为分桶表不能直接将文件数据load到表中,需要先load到中间表再insert到分桶表
create table if not exists ods.personal_info_temp
(id int comment 'id',
name string comment '姓名',
age string comment '年龄' ,
sex string comment '性别:1男0女2其他' ,
telno string comment '手机号' )
row format delimited
fields terminated by ','
stored as textfile
;
#通过alter table语句将该表设置为有桶的分区表,并指定桶的数量
alter table ods.personal_info clustered by (sex) into 3 buckets;

 0e6898a4eced4d1ea25be256653598e9.png

开始做数据

vi personal_info_test.txt

1,张三,23,1,187xxxx0001
2,王五,56,1,187xxxx0002
3,李四,18,1,187xxxx0003
4,刘七,36,0,187xxxx0004
5,牛八,42,1,187xxxx0005
6,吴九,23,1,187xxxx0006
7,孙十,28,0,187xxxx0007
8,钱十一,29,1,187xxxx0008
9,周十二,30,1,187xxxx0009
10,郑十三,31,1,187xxxx0010
11,冯十四,26,1,187xxxx0011
12,陈十五,23,0,187xxxx0012
13,姜十六,24,1,187xxxx0013
14,韩十七,35,1,187xxxx0014
15,路十八,42,0,187xxxx0015
16,杨十九,38,1,187xxxx0016
17,朱二十,31,1,187xxxx0017
18,秦二十一,27,2,187xxxx0018
19,何二十二,28,2,187xxxx0019
20,金二十三,29,2,187xxxx0010

加载数据到表中

#load数据到中间临时表
load data local inpath '/opt/test/personal_info_test.txt' into table  ods.personal_info_temp;
#采用spark引擎
set hive.execution.engine=spark;
#insert数据到目标表
insert into table ods.personal_info partition(dt='20240301') select id,name,age,sex,telno from ods.personal_info_temp ;

1ef28a6eea574a0690230fd74503ecb6.png

 c197566add0c4183ab4e7b9c8e40bab6.png

下面我们来看看表在HDFS上的存储方式

fcfd4e6d46c349fea363635d5867769b.png

从图中可以看出:

        1、关注数据的分区和存储:每个分区实际上对应HDFS下的一个文件夹,这个文件夹中保存了这个分区的数据。再进行查询时可以避免全局扫描,提升性能。而且方便对历史数据进行管理,灵活的按照策略进行删除和备份

        2、考虑数据的分布以及查询效率:分桶是将数据划分为若干个存储文件,并规定存储文件的数量,分桶可以将数据分成更小的存储单元,提高了数据统计和聚合的效率。分桶后更容易实现均衡负载。分发到多个节点中,提高了查询效率

        除了基元列类型(整数、浮点数、泛型字符串、日期和布尔值)外,Hive还支持 arrays 和 maps 。此外,用户可以通过编程方式从任何基元、集合或其他用户定义的类型中组合自己的类型。类型系统与SerDe(Seralization/Desolialization)和对象检查器接口紧密相连。用户可以通过实现自己的对象检查器来创建自己的类型,并且使用这些对象检查器可以创建自己的SerDes来将数据序列化和反序列化为HDFS文件)。当涉及到理解其他数据格式和更丰富的类型时,这两个接口提供了必要的钩子来扩展Hive的功能。内置对象检查器(如ListObjectInspector、StructObjectInspecter和MapObjectInspect)提供了必要的基元,以便以可扩展的方式组成更丰富的类型。对于maps  和 arrays ,提供了有用的内置函数,如大小和索引运算符。虚线表示法用于导航嵌套类型,例如a.b.c=1查看类型a的字段b的字段c,并将其与1进行比较。

三、元数据存储

1、动机

        元数据存储提供了数据仓库的两个重要但经常被忽视的功能:数据抽象和数据发现。如果没有Hive中提供的数据抽象,用户必须在查询的同时提供有关数据格式、提取器和加载器的信息。在配置单元中,这些信息是在创建表的过程中提供的,每次引用表时都会重复使用。这与传统的仓储系统非常相似。第二个功能是数据发现,使用户能够发现和探索仓库中的相关和特定数据。可以使用此元数据构建其他工具,以公开并可能增强有关数据及其可用性的信息。Hive通过提供与Hive查询处理系统紧密集成的元数据存储库来实现这两个功能,从而使数据和元数据同步。

2、元数据对象

数据库:是表的命名空间。当你没有指定数据库时,默认会指向 default 

表:表的元数据包含列、所有者、存储和SerDe信息的列表。它还可以包含任何用户提供的键和值数据。存储信息包括基础数据的位置、文件输入和输出格式以及桶信息。SerDe元数据包括序列化器和反序列化器的实现类以及实现所需的任何支持信息。所有这些信息都可以在创建表的过程中提供。

分区:每个分区都可以有自己的列以及SerDe和存储信息。这有助于在不影响旧分区的情况下更改架构

3、元数据存储架构

        元存储是具有数据库或文件支持存储的对象存储。数据库支持的存储是使用名为DataNucleus的对象关系映射(ORM)解决方案实现的。将其存储在关系数据库中的主要动机是元数据的可查询性。使用单独的数据存储来存储元数据而不是使用HDFS的一些缺点是同步和可伸缩性问题。此外,由于缺乏对文件的随机更新,因此没有明确的方法在HDFS之上实现对象存储。这一点,再加上关系性存储的可查询性优势,因此选择元数据存储在关系型数据库中。

        元数据存储可以配置为以两种方式使用:远程和嵌入式。在远程模式下,元商店是一项节俭服务。此模式对非Java客户端非常有用。在嵌入式模式下,Hive客户端使用JDBC直接连接到底层元存储。这种模式很有用,因为它避免了另一个需要维护和监控的系统。这两种模式可以共存。

4、元数据存储接口

        元数据存储提供了一个Thrift接口来操作和查询配置单元元数据。Thrift提供许多流行语言的绑定。第三方工具可以使用此接口将Hive元数据集成到其他业务元数据存储库中。

四、Hive查询语言

        HiveQL是Hive的一种类似SQL的查询语言。它主要模仿SQL语法来创建表、将数据加载到表和查询表。HiveQL还允许用户嵌入他们的自定义map reduce脚本。这些脚本可以使用简单的基于行的流式接口以任何语言编写——从标准输入读取行,并将行写入标准输出。这种灵活性是以将行从字符串转换为字符串所造成的性能损失为代价的。然而,我们已经看到,用户并不介意这样做,因为他们可以用自己选择的语言实现脚本。HiveQL独有的另一个功能是多表插入。在此构造中,用户可以使用单个HiveQL查询对同一输入数据执行多个查询。Hive优化了这些查询以共享输入数据的扫描,从而将这些查询的吞吐量提高了几个数量级。

五、编译

1、语法解析器

        将查询字符串转换为解析树表示形式

2、语义分析器

        将解析树转换为内部查询表示,它仍然是基于块的,而不是运算符树。作为此步骤的一部分,将验证列名,并执行诸如*之类的展开。在此阶段还将执行类型检查和任何隐式类型转换。如果所考虑的表是分区表(这是常见的情况),则会收集该表的所有表达式,以便稍后使用它们来修剪不需要的分区。如果查询已指定采样,则也会收集采样以供以后使用。

3、逻辑计划生成器

        将内部查询表示形式转换为逻辑计划,该计划由运算符树组成。有些运算符是关系代数运算符,如“filter”、“join”等。但有些运算符是Hive特定的,稍后用于将此计划转换为一系列MapReduce作业。一个这样的运算符是出现在MapReduce边界处的reduceLink运算符。这一步骤还包括优化器来转换计划以提高性能——其中一些转换包括:将一系列连接转换为单个多路连接,通过执行组的映射侧部分聚合,分两个阶段执行组,以避免在分组密钥存在偏斜数据的情况下,单个reducer 可能成为瓶颈的情况。每个运算符都包括一个描述符,该描述符是一个可串行化的对象

4、查询计划生成器

        将逻辑计划转换为一系列MapReduce任务。操作符树被递归遍历,分解为一系列MapReduce可序列化任务,这些任务稍后可以提交到Hadoop分布式文件系统的MapReduce框架。reduceLink操作符是MapReduce边界,其描述符包含reduce键。reduceLink描述符中的缩小键用作贴图缩小边界中的缩小密钥。如果查询指定了该计划,则该计划由所需的样本/分区组成。该计划将被序列化并写入文件。

六、优化器

        优化器将执行更多的计划转换。优化器是一个不断发展的组件。截至2011年,它是基于规则的,并执行以下操作:列修剪和谓词下推。然而,基础设施已经到位,包括其他优化(如Map端连接)的工作正在进行中。

        优化器可以增强为基于成本的优化。输出表的排序特性也可以保留下来,并在以后用于生成更好的计划。可以对小样本数据进行查询,以猜测数据分布,从而可以用于生成更好的计划。

七、Hive API

        提供API可以使自己的应用程序或框架与Hive生态系统集成。

        API可以分为两个类别:基于操作的API和基于查询的API。

1、基于查询的API

        基于查询的API允许提交和执行HQL的某些子集。API客户端通常需要解析和解释任何返回值,因为返回类型的范围通常非常广泛。此类API的实现通常针对Hive的“查询语言”子系统,该子系统解析查询并根据需要执行查询。考虑到大多数基于查询的API共享类似的执行路径,通过API提交的任何操作都可能具有与通过Hive CLI提交的等效HQL类似的结果。基于查询的API通常用于构建动态创建Hive API操作或HQL等效结果很重要的流程。这种类型的API的缺点包括:缺乏编译时检查,在更高抽象级别上工作可能效率低下,以及可能容易受到类似SQL-injection的攻击。

2、基于操作的API

        基于操作的API公开了许多范围严格的方法,每个方法都实现了一个非常特定的配置单元操作。这样的方法通常接受并返回适合于其各自操作的强类型值。操作的实现通常针对Hive内非常特定的层或子系统,因此在使用中可能是高效的。然而,操作的结果可能与等效HQL的结果不同,因为在每种情况下都可能调用不同的代码路径。基于操作的API用于构建需要以重复的、声明性的方式进行交互的进程,并提供更大程度的编译时检查。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/429306.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux - 安装 maven(详细教程)

目录 一、下载二、安装三、配置环境变量四、镜像资源配置 一、下载 官网&#xff1a;https://maven.apache.org/download.cgi 打开 maven 的官网下载页面&#xff0c;点击 bin.tar.gz 文件链接 即可下载最新版本的 maven 如果想要下载旧版本的 meven&#xff0c;则点击 Maven…

【短时交通流量预测】基于GRNN神经网络

课题名称&#xff1a;基于GRNN神经网络的短时交通流量预测 版本时间&#xff1a;2023-04-27 代码获取方式&#xff1a;QQ&#xff1a;491052175 或者 私聊博主获取 模型简介&#xff1a; 城市交通路网中交通路段上某时刻的交通流量与本路段前几个时段的交通流量有关&#x…

Python类 __init__() 是一个特殊的方法

设计者&#xff1a;ISDF工软未来 版本&#xff1a;v1.0 日期&#xff1a;2024/3/5__init__() 是一个特殊的方法 类似c# C的构造函数 两头都包含两个下划线&#xff0c;这是约定&#xff0c;用于与普通的函数保持区分class User:用户类def __init__(self,first_name,last_name):…

软件应用,财务收支系统试用版操作教程,佳易王记录账单的软件系统

软件应用&#xff0c;财务收支系统试用版操作教程&#xff0c;佳易王记录账单的软件系统 一、前言 以下软件操作教程以 佳易王账单记账统计管理系统V17.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 如上图&#xff0c;统计报表包含 收支汇…

JavaScript基础2之运算符、函数

JavaScript基础 运算符一元操作符递增/递减一元加和减 布尔操作符逻辑非逻辑与逻辑或 乘性操作符乘法操作符除法操作符取模操作符 加性操作符加法操作符减法操作符 比较操作符相等操作符关系操作符 函数函数声明函数表达式箭头函数函数的实参和形参arguments 默认参数参数的拓展…

QUIC来了!

什么是QUIC QUIC&#xff0c;快速UDP网络连接(Quick UDP Internet Connection)的简称&#xff0c;即RFC文档描述它为一个面向连接的安全通用传输协议。其基于UDP协议实现了可靠传输及拥塞控制&#xff0c;简单来说&#xff0c;QUIC TCP TLS。 为什么有了QUIC HTTP2.0为了为了…

如何处理微服务之间的通信和数据一致性?

✨✨祝屏幕前的兄弟姐妹们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; 目录 引言 一、微服务通信 1、同步通信&#xff1a;HTTP 1.1.同步通信示例代码&#xf…

第四十九回 吴学究双掌连环计 宋公明三打祝家庄-Python与HTTP服务交互

吴用请戴宗从梁山请来铁面孔目裴宣、圣手书生萧让、通臂猿侯健、玉臂匠金大坚来帮忙。又告诫扈家庄的扈成&#xff0c;打起来不要去帮祝家庄。 孙立把旗号改成“登州兵马提辖孙立”&#xff0c;来祝家庄找峦廷玉&#xff0c;被热情接待。 第三天&#xff0c;宋江派小李广花荣…

Vue 路由功能

安装路由 npm install vue-router4创建路由器并导出 //导入vue-router import { createRouter, createWebHistory } from vue-router //导入组件 import LoginVue from /views/Login.vue import LayoutVue from /views/Layout.vue//定义路由关系 const routes [{ path: /log…

安卓玩机工具推荐----ADB状态读写分区 备份分区 恢复分区 查看分区号 工具操作解析

在以往玩机过程中。很多机型备份分区 备份固件需要借助adb手动指令或者第三方手机软件或者特定的一些工具来操作。有些朋友需要查看当前机型分区名称和对应的分区号。此类操作我前面的博文专门说过对应的adb指令。但有些界面化的工具比较方便简单。 相关分区同类博文&#xff…

WPF中如何设置自定义控件(二)

前一篇文章中简要讲解了圆角按钮、圆形按钮的使用,以及在windows.resource和app.resource中设置圆角或圆形按钮的样式。 这篇主要讲解Polygon(多边形)、Ellipse(椭圆)、Path(路径)这三个内容。 Polygon 我们先看一下的源码: namespace System.Windows.Shapes { pu…

性能问题分析排查思路之机器(3)

本文是性能问题分析排查思路的展开内容之一&#xff0c;第2篇&#xff0c;主要分为日志1期&#xff0c;机器4期、环境2期共7篇系列文章&#xff0c;本期是第三篇&#xff0c;讲机器&#xff08;硬件&#xff09;的网络方面的排查方法和最佳实践。 主要内容如图所示&#xff1a…

【短时交通流量预测】基于单层BP神经网络

课题名称&#xff1a;基于单层BP神经网络的短时交通流量预测 版本时间&#xff1a;2023-04-27 代码获取方式&#xff1a;QQ&#xff1a;491052175 或者 私聊博主获取 模型简介&#xff1a; 城市交通路网中交通路段上某时刻的交通流量与本路段前几个时段的交通流量有关&…

【计算机学习】-- 电脑的组装和外设

系列文章目录 文章目录 系列文章目录前言一、电脑的组装1.CPU2.主板3.显卡4.硬盘5.内存6.散热器7.电源8.机箱 二、电脑外设选用1.显示器2.鼠标3.键盘4.音响 总结 前言 一、电脑的组装 1.CPU 返回目录 认识CPU CPU&#xff0c;即中央处理器&#xff0c;负责电脑资源的调度安…

器件选型【电容,电阻篇】

电阻篇&#xff1a; 一句话先做总结&#xff1a;电阻的选型主要考虑额定电压和过流能力&#xff08;基于封装大小&#xff09; 电阻封装规格越大功率越大。但其功率也与温度有关&#xff0c;如果温度超过 70℃&#xff0c;其额定功率是会下降的。并且&#xff0c;R01005 和 R0…

#QT(串口助手-实现)

1.IDE&#xff1a;QTCreator 2.实验 3.记录 &#xff08;1&#xff09;在widget.h中加入必要文件&#xff0c;并且定义一个类指针 &#xff08;2&#xff09;如果有类的成员不知道怎么写&#xff0c;可以通过以下途径搜索 &#xff08;2&#xff09;设置串口数据 void Widget…

AI大全-通往AGI之路

背景 自从AI大模型出来之后&#xff0c;就有很多做资源整理的社区&#xff0c;整理学习资料&#xff0c;整理各种AI工具大全&#xff0c;我也整理过一段时间的最新AI的资讯&#xff0c;也曾尝试去弄一个AI的入口类的东西。但是最近看到一个在飞书上的分享&#xff0c;我觉得他…

IDEA自带 .http 请求工具文档

基础语法 请求格式 基础格式 Method Request-URI HTTP-Version Header-field: Header-valueRequest-Body其中&#xff0c;GET 请求可以省略 Method 不写&#xff1b;HTTP-Version 可以省略不写&#xff0c;默认使用 1.1 版本。 示例&#xff1a; GET https://www.baidu.co…

【Python】成功解决TypeError: list indices must be integers or slices, not float

【Python】成功解决TypeError: list indices must be integers or slices, not float &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&…

GIS之深度学习05:VisualStudio安装教程

在安装CUDA前&#xff0c;建议先安装VisualStudio&#xff0c;以防报错 VisualStudio安装步骤简单&#xff0c;但时间较长。。。。。。 正文开始&#xff1a; VisualStudio官网&#xff1a;Visual Studio: IDE and Code Editor for Software Developers and Teams 点击右上角…