【Python实战】——Python+Opencv是实现车牌自动识别

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 导入相关模块
  • 2 相关功能函数定义
    • 2.1 彩色图片显示函数(plt_show0)
    • 2.2 灰度图片显示函数(plt_show)
    • 2.3 图像去噪函数(gray_guss)
  • 2 图像预处理
    • 2.1 图片读取
    • 2.2 高斯去噪
    • 2.3 边缘检测
  • 2.4 阈值化
  • 3 车牌定位
    • 3.1 区域选择
    • 3.2 形态学操作
    • 3.3 轮廓检测
  • 4 车牌字符分割
    • 4.1 高斯去噪
    • 4.2 阈值化
    • 4.3 膨胀操作
    • 4.4 车牌号排序
    • 4.5 分割效果
  • 5 模板匹配
    • 5.1 准备模板
    • 5.2 匹配结果
    • 5.3 匹配效果展示
  • 6完整代码

该篇文章将以实战形式演示利用Python结合Opencv实现车牌识别,全程涉及图像预处理、车牌定位、车牌分割、通过模板匹配识别结果输出。该项目对于智能交通、车辆管理等领域具有实际应用价值。通过自动识别车牌号码,可以实现车辆追踪、违章查询、停车场管理等功能,提高交通管理的效率和准确性。可用于车牌识别技术学习。

技术要点:

  • OpenCV:用于图像处理和计算机视觉任务。
  • Python:作为编程语言,具有简单易学、资源丰富等优点。
  • 图像处理技术:如灰度化、噪声去除、边缘检测、形态学操作、透视变换等。

1 导入相关模块

import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
from PIL import ImageFont, ImageDraw, Image

2 相关功能函数定义

2.1 彩色图片显示函数(plt_show0)

def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()

cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]

2.2 灰度图片显示函数(plt_show)

def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()

2.3 图像去噪函数(gray_guss)

def gray_guss(image):
    image = cv2.GaussianBlur(image, (3, 3), 0)
    gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    return gray_image

此处演示使用高斯模糊去噪。

cv2.GaussianBlur参数说明:

  • src:输入图像,可以是任意数量的通道,这些通道可以独立处理,但深度应为 CV_8UCV_16UCV_16SCV_32FCV_64F
  • ksize:高斯核的大小,必须是正奇数,例如 (3, 3)、(5, 5) 等。如果 ksize 的值为零,那么它会根据 sigmaXsigmaY 的值来计算。
  • sigmaX:X 方向上的高斯核标准偏差。
  • dst:输出图像,大小和类型与 src 相同。
  • sigmaY:Y 方向上的高斯核标准偏差,如果 sigmaY 是零,那么它会与 sigmaX 的值相同。如果 sigmaY 是负数,那么它会从 ksize.widthksize.height 计算得出。
  • borderType:像素外插法,有默认值。

2 图像预处理

2.1 图片读取

origin_image = cv2.imread('D:/image/car3.jpg')

  此处演示识别车牌原图:

2.2 高斯去噪

origin_image = cv2.imread('D:/image/car3.jpg')
# 复制一张图片,在复制图上进行图像操作,保留原图
image = origin_image.copy()
gray_image = gray_guss(image)

2.3 边缘检测

Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX

x方向上的边缘检测(增强边缘信息)

2.4 阈值化

# 图像阈值化操作——获得二值化图
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 显示灰度图像
plt_show(image)

  运行结果:

3 车牌定位

3.1 区域选择

kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 显示灰度图像
plt_show(image)

从图像中提取对表达和描绘区域形状有意义的图像分量。

  运行结果:

3.2 形态学操作

# 腐蚀(erode)和膨胀(dilate)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向进行闭操作(抑制暗细节)
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的开操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值滤波(去噪)
image = cv2.medianBlur(image, 21)
# 显示灰度图像
plt_show(image)

使用膨胀和腐蚀操作来突出车牌区域。

   运行结果:

3.3 轮廓检测

contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for item in contours:
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
    if (weight > (height * 3)) and (weight < (height * 4.5)):
        image = origin_image[y:y + height, x:x + weight]
        plt_show(image)

4 车牌字符分割

4.1 高斯去噪

# 图像去噪灰度处理
gray_image = gray_guss(image)

4.2 阈值化

ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)

  运行结果:

4.3 膨胀操作

#膨胀操作
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
image = cv2.dilate(image, kernel)
plt_show(image)

  运行结果:

4.4 车牌号排序

words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放轮廓的起始点和宽高
for word in words:
    # 筛选字符的轮廓
    if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
        i = i+1
        if word[2] < 15:
            splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
        else:
            splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
        word_images.append(splite_image)
        print(i)
print(words)

  运行结果:

1
2
3
4
5
6
7
[[2, 0, 7, 70], [12, 6, 30, 55], [15, 7, 7, 9], [46, 6, 32, 55], [83, 30, 9, 9], [96, 7, 32, 55], [132, 8, 32, 55], [167, 8, 30, 54], [202, 62, 7, 6], [203, 7, 30, 55], [245, 7, 12, 54], [266, 0, 12, 70]]

4.5 分割效果

for i,j in enumerate(word_images):  
    plt.subplot(1,7,i+1)
    plt.imshow(word_images[i],cmap='gray')
plt.show()

  运行结果:

5 模板匹配

5.1 准备模板

# 准备模板(template[0-9]为数字模板;)
template = ['0','1','2','3','4','5','6','7','8','9',
            'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
            '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
            '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']

# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
def read_directory(directory_name):
    referImg_list = []
    for filename in os.listdir(directory_name):
        referImg_list.append(directory_name + "/" + filename)
    return referImg_list

# 获得中文模板列表(只匹配车牌的第一个字符)
def get_chinese_words_list():
    chinese_words_list = []
    for i in range(34,64):
        #将模板存放在字典中
        c_word = read_directory('D:/refer1/'+ template[i])
        chinese_words_list.append(c_word)
    return chinese_words_list
chinese_words_list = get_chinese_words_list()


# 获得英文模板列表(只匹配车牌的第二个字符)
def get_eng_words_list():
    eng_words_list = []
    for i in range(10,34):
        e_word = read_directory('D:/refer1/'+ template[i])
        eng_words_list.append(e_word)
    return eng_words_list
eng_words_list = get_eng_words_list()


# 获得英文和数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():
    eng_num_words_list = []
    for i in range(0,34):
        word = read_directory('D:/refer1/'+ template[i])
        eng_num_words_list.append(word)
    return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()

此处需提前准备各类字符模板。

5.2 匹配结果

# 获得英文和数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():
    eng_num_words_list = []
    for i in range(0,34):
        word = read_directory('D:/refer1/'+ template[i])
        eng_num_words_list.append(word)
    return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()


# 读取一个模板地址与图片进行匹配,返回得分
def template_score(template,image):
    #将模板进行格式转换
    template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
    template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
    #模板图像阈值化处理——获得黑白图
    ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
#     height, width = template_img.shape
#     image_ = image.copy()
#     image_ = cv2.resize(image_, (width, height))
    image_ = image.copy()
    #获得待检测图片的尺寸
    height, width = image_.shape
    # 将模板resize至与图像一样大小
    template_img = cv2.resize(template_img, (width, height))
    # 模板匹配,返回匹配得分
    result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
    return result[0][0]


# 对分割得到的字符逐一匹配
def template_matching(word_images):
    results = []
    for index,word_image in enumerate(word_images):
        if index==0:
            best_score = []
            for chinese_words in chinese_words_list:
                score = []
                for chinese_word in chinese_words:
                    result = template_score(chinese_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[34+i])
            r = template[34+i]
            results.append(r)
            continue
        if index==1:
            best_score = []
            for eng_word_list in eng_words_list:
                score = []
                for eng_word in eng_word_list:
                    result = template_score(eng_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[10+i])
            r = template[10+i]
            results.append(r)
            continue
        else:
            best_score = []
            for eng_num_word_list in eng_num_words_list:
                score = []
                for eng_num_word in eng_num_word_list:
                    result = template_score(eng_num_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[i])
            r = template[i]
            results.append(r)
            continue
    return results


word_images_ = word_images.copy()
# 调用函数获得结果
result = template_matching(word_images_)
print(result)
print( "".join(result))

  运行结果:

['渝', 'B', 'F', 'U', '8', '7', '1']
渝BFU871

“”.join(result)函数将列表转换为拼接好的字符串,方便结果显示

5.3 匹配效果展示

height,weight = origin_image.shape[0:2]
print(height)
print(weight)

image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)

#设置需要显示的字体
fontpath = "font/simsun.ttc"
font = ImageFont.truetype(fontpath,64)
img_pil = Image.fromarray(image_1)
draw = ImageDraw.Draw(img_pil)
#绘制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
print( "".join(result))
plt_show0(bk_img)

  运行结果:

6完整代码

# 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
from PIL import ImageFont, ImageDraw, Image
# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()
    
# 图像去噪灰度处理
def gray_guss(image):
    image = cv2.GaussianBlur(image, (3, 3), 0)
    gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    return gray_image

# 读取待检测图片
origin_image = cv2.imread('D:/image/car3.jpg')
# 复制一张图片,在复制图上进行图像操作,保留原图
image = origin_image.copy()
# 图像去噪灰度处理
gray_image = gray_guss(image)
# x方向上的边缘检测(增强边缘信息)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX

# 图像阈值化操作——获得二值化图
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 显示灰度图像
plt_show(image)
# 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 显示灰度图像
plt_show(image)


# 腐蚀(erode)和膨胀(dilate)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向进行闭操作(抑制暗细节)
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的开操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值滤波(去噪)
image = cv2.medianBlur(image, 21)
# 显示灰度图像
plt_show(image)

# 获得轮廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for item in contours:
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
    if (weight > (height * 3)) and (weight < (height * 4.5)):
        image = origin_image[y:y + height, x:x + weight]
        plt_show(image)


#车牌字符分割
# 图像去噪灰度处理
gray_image = gray_guss(image)

# 图像阈值化操作——获得二值化图   
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)

#膨胀操作
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
image = cv2.dilate(image, kernel)
plt_show(image)


# 查找轮廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
words = []
word_images = []
#对所有轮廓逐一操作
for item in contours:
    word = []
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    word.append(x)
    word.append(y)
    word.append(weight)
    word.append(height)
    words.append(word)
# 排序,车牌号有顺序。words是一个嵌套列表
words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放轮廓的起始点和宽高
for word in words:
    # 筛选字符的轮廓
    if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
        i = i+1
        if word[2] < 15:
            splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
        else:
            splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
        word_images.append(splite_image)
        print(i)
print(words)

for i,j in enumerate(word_images):  
    plt.subplot(1,7,i+1)
    plt.imshow(word_images[i],cmap='gray')
plt.show()

#模版匹配
# 准备模板(template[0-9]为数字模板;)
template = ['0','1','2','3','4','5','6','7','8','9',
            'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
            '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
            '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']

# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
def read_directory(directory_name):
    referImg_list = []
    for filename in os.listdir(directory_name):
        referImg_list.append(directory_name + "/" + filename)
    return referImg_list

# 获得中文模板列表(只匹配车牌的第一个字符)
def get_chinese_words_list():
    chinese_words_list = []
    for i in range(34,64):
        #将模板存放在字典中
        c_word = read_directory('D:/refer1/'+ template[i])
        chinese_words_list.append(c_word)
    return chinese_words_list
chinese_words_list = get_chinese_words_list()


# 获得英文模板列表(只匹配车牌的第二个字符)
def get_eng_words_list():
    eng_words_list = []
    for i in range(10,34):
        e_word = read_directory('D:/refer1/'+ template[i])
        eng_words_list.append(e_word)
    return eng_words_list
eng_words_list = get_eng_words_list()


# 获得英文和数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():
    eng_num_words_list = []
    for i in range(0,34):
        word = read_directory('D:/refer1/'+ template[i])
        eng_num_words_list.append(word)
    return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()


# 读取一个模板地址与图片进行匹配,返回得分
def template_score(template,image):
    #将模板进行格式转换
    template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
    template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
    #模板图像阈值化处理——获得黑白图
    ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
#     height, width = template_img.shape
#     image_ = image.copy()
#     image_ = cv2.resize(image_, (width, height))
    image_ = image.copy()
    #获得待检测图片的尺寸
    height, width = image_.shape
    # 将模板resize至与图像一样大小
    template_img = cv2.resize(template_img, (width, height))
    # 模板匹配,返回匹配得分
    result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
    return result[0][0]


# 对分割得到的字符逐一匹配
def template_matching(word_images):
    results = []
    for index,word_image in enumerate(word_images):
        if index==0:
            best_score = []
            for chinese_words in chinese_words_list:
                score = []
                for chinese_word in chinese_words:
                    result = template_score(chinese_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[34+i])
            r = template[34+i]
            results.append(r)
            continue
        if index==1:
            best_score = []
            for eng_word_list in eng_words_list:
                score = []
                for eng_word in eng_word_list:
                    result = template_score(eng_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[10+i])
            r = template[10+i]
            results.append(r)
            continue
        else:
            best_score = []
            for eng_num_word_list in eng_num_words_list:
                score = []
                for eng_num_word in eng_num_word_list:
                    result = template_score(eng_num_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[i])
            r = template[i]
            results.append(r)
            continue
    return results


word_images_ = word_images.copy()
# 调用函数获得结果
result = template_matching(word_images_)
print(result)
# "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
print( "".join(result))



height,weight = origin_image.shape[0:2]
print(height)
print(weight)

image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)

#设置需要显示的字体
fontpath = "font/simsun.ttc"
font = ImageFont.truetype(fontpath,64)
img_pil = Image.fromarray(image_1)
draw = ImageDraw.Draw(img_pil)
#绘制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
print( "".join(result))
plt_show0(bk_img)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/428739.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动化测试过程中的手机验证码处理!

手机验证码登录很普遍了&#xff0c;那么在自动化测试的时候需要登录&#xff0c;登录不了就意味着很多自动化就没法执行下去了。 到底该怎么处理呢&#xff1f;其实并不难&#xff0c;我们先看下验证码的业务逻辑&#xff0c;在我们“点击获取验证码”按钮的时候&#xff0c;…

LeetCode刷题-206.反转链表【递归实现】

206.反转链表 题目 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 示例1 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例2 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例3 输入&#xff1a;hea…

【C语言】动态内存管理------常见错误,以及经典笔试题分析,柔性数组【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本篇为【C语言】动态内存管理------常见错误&#xff0c;以及经典笔试题分析&#xff0c;柔性数组【图文详解】&#xff0c;感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言 在了解完内存操作中最关键的一节---动…

微信客户维护的三个关键点,助你提高转化率!

对于微信客户维护&#xff0c;有三个关键点尤为重要&#xff0c;它们能够有效提高客户转化率&#xff0c;让客户服务更加高效和个性化。接下来&#xff0c;让我们一起来了解这三个关键点。 1、 给客户打标签 在日常的客户维护中&#xff0c;给客户打标签是非常重要的。通过给…

BioTech - 药物晶型预测与剂型设计 概述

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/136441046 药物晶型预测与剂型设计是指利用计算机模拟和优化药物分子在固态形式下的结构、性质和稳定性&#xff0c;以及与制剂工艺和质…

【Python】外网远程登录访问jupyter notebook+pycharm使用ipython

第一步&#xff1a;创建python虚拟环境 conda create -n py3610 python3.6.10第二步&#xff1a;安装ipython pip install ipython pip install ipython notebook第三步&#xff1a;创建 IPython Notebook 服务器配置文件 # 进入python交互shell&#xff0c;设置密码 >&…

基于springboot+vue的校园失物招领系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

HLS的硬件加速器设计

完整可点击跳转 目录 硬件加速器的设计方法高层次综合HLSHLS与电路地对应关系HLS的设计规范HLS优化延迟优化降低单个循环的延迟循环展开(Unroll)循环展平(Flatten)多个循环的并行化循环合并循环函数化数据流执行(Dataflow)吞吐量优化循环/函数流水线数据流优化调试硬件加…

UCSF DOCK 分子对接详细案例(04)-基于RDKit描述符的分子从头设计DOCK_D3N

欢迎浏览我的CSND博客&#xff01; Blockbuater_drug …点击进入 文章目录 前言一、 软件及操作环境二、研究目的三、结构文件准备四、 DOCK/RDKit中 de novo design4.1 de novo design - refine_D3N4.2 对输出重新评分 总结参考资料 前言 本文是UCSF DOCK的使用案例分享&…

【JavaScript 漫游】【029】GlobalEventHandlers 接口总结

文章简介 本篇文章为【JavaScript 漫游】专栏第 029 篇文章&#xff0c;对 JavaScript 中的 GlobalEventHandlers 接口的知识点进行了总结。 GlobalEventHandlers 接口 除了 addEventListener()&#xff0c;还有一种方法可以直接指定事件的回调函数。 div.onclick clickHa…

LSA头部结构简述

LSA&#xff08;Link State Advertisement&#xff09;是一种用于路由协议头部结构&#xff0c;用于在网络中传递路由信息。 LSA头部结构包含以下几个字段&#xff1a; 1、LSA类型&#xff08;LSA Type&#xff09;&#xff1a;指示LSA的类型&#xff0c;不同类型的LSA用于传递…

软件项目概要设计说明书

1引言 1.1编写目的 1.2项目背景 1.3参考资料 2系统总体设计 2.1整体架构 2.2整体功能架构 2.3整体技术架构 2.4运行环境设计 2.5设计目标 3系统功能模块设计 3.1个人办公 3.2系统管理 4性能设计 4.1响应时间 4.2并发用户数 5接口设计 5.1接口设计原则 5.2接口实现方式 6运行设计…

【深度学习目标检测】二十一、基于深度学习的葡萄检测系统-含数据集、GUI和源码(python,yolov8)

葡萄检测在农业中具有多方面的意义&#xff0c;具体来说如下&#xff1a; 首先&#xff0c;葡萄检测有助于保障农产品质量安全。通过对葡萄进行质量安全专项监测&#xff0c;可以确保葡萄中的农药残留、重金属等有害物质含量符合标准&#xff0c;从而保障消费者的健康。同时&am…

Java 面试题

Java 基础 以下代码执行结果&#xff1f; 示例1&#xff1a; public static void main(String[] args) {int a 0;Integer b 0;String c "0";String d new String("0");change(a, b, c, d);System.out.println(a "|" b "|" …

springboot244基于SpringBoot和VUE技术的智慧生活商城系统设计与实现

智慧生活商城系统的设计与实现 摘 要 计算机网络发展到现在已经好几十年了&#xff0c;在理论上面已经有了很丰富的基础&#xff0c;并且在现实生活中也到处都在使用&#xff0c;可以说&#xff0c;经过几十年的发展&#xff0c;互联网技术已经把地域信息的隔阂给消除了&…

07.IO流

07. IO流 01. 文件 1. 什么是文件 ​ 文件对我们并不陌生&#xff0c;文件是保存数据的地方&#xff0c;比如大家经常使用的word文档&#xff0c;txt文件&#xff0c;excel文件…都是文件。它既可以保存一张图片&#xff0c;可以保存视频&#xff0c;声音 2.文件流 ​ 文件…

水牛社软件是真的吗?

软件是真的&#xff0c;不过毕竟是为了赚钱或者获取资源而买的&#xff0c;所以大部分只关心能赚多少钱吧 说实话&#xff0c;我用了2年了&#xff0c;一些独立的项目还有群&#xff0c;有一月挣几千上万的&#xff0c;有一月赚几百的 软件是一个集合体&#xff0c;不是像很多…

视频云平台——搭建SRS5平台支持GB28181视频流的推送

&#x1f4e2;欢迎点赞 &#xff1a;&#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff0c;赐人玫瑰&#xff0c;手留余香&#xff01;&#x1f4e2;本文作者&#xff1a;由webmote 原创&#x1f4e2;作者格言&#xff1a;新的征程&#xff0c;我们面对的不仅…

2核4g服务器能支持多少人访问?并发数性能测评

2核4g服务器能支持多少人访问&#xff1f;支持80人同时访问&#xff0c;阿腾云使用阿里云2核4G5M带宽服务器&#xff0c;可以支撑80个左右并发用户。阿腾云以Web网站应用为例&#xff0c;如果视频图片媒体文件存储到对象存储OSS上&#xff0c;网站接入CDN&#xff0c;还可以支持…

今晚打老虎:用katalon解决接口/自动化测试拦路虎--参数化

不管是做接口测试还是做自动化测试&#xff0c;参数化肯定是一个绕不过去的坎。 因为我们要考虑到多个接口都使用相同参数的问题。所以&#xff0c;本文将讲述一下katalon是如何进行参数化的。 全局变量 右侧菜单栏中打开profile&#xff0c;点击default&#xff0c;打开之后…