【大厂AI课学习笔记NO.59】(12)过拟合与欠拟合

拟合就是调整参数和模型,让结果无限接近真实值的过程。

我们先来了解个概念: 

偏差-方差窘境(bias-variance dilemma)是机器学习中的一个重要概念,它涉及到模型选择时面临的权衡问题。

偏差(Bias)度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力。当模型过于简单,无法捕捉到数据的所有复杂性时,就会出现高偏差的情况,此时模型可能会欠拟合(underfit)数据。

方差(Variance)则度量了在同样大小的训练集的变动下,学习性能的变化,即刻画了数据扰动所造成的影响。当模型过于复杂,对训练数据中的噪声和特定细节过于敏感时,就会出现高方差的情况,此时模型可能会过拟合(overfit)数据。

在模型选择时,我们通常会面临偏差和方差之间的权衡。简单的模型可能具有较高的偏差和较低的方差,而复杂的模型可能具有较低的偏差和较高的方差。因此,在选择模型时,我们需要找到一个平衡点,使得模型既能够捕捉到数据的内在规律,又不会对数据中的噪声和特定细节过于敏感。

偏差-方差窘境的存在意味着我们无法同时最小化偏差和方差。在实际应用中,我们通常需要借助交叉验证、正则化等技术来平衡偏差和方差,从而选择出最优的模型。

需要注意的是,除了偏差和方差之外,还有一个重要的因素也会影响模型的性能,那就是噪声(Noise)。噪声表达了在当前任务上任何算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度。因此,在实际应用中,我们还需要考虑噪声对模型性能的影响。

泛化性能是由学习算法的能力,数据的充分性,以及学习任务共同难度决定了。

之前讲过,在此不再赘述。

我们再学习一个概念:偏差-方差分解(bias-variance decomposition)

偏差-方差分解(Bias-Variance Decomposition)是机器学习中一种重要的分析技术,用于解释学习算法泛化性能的一种工具。给定学习目标和训练集规模,它可以把一种学习算法的期望误差分解为三个非负项的和,即样本真实噪音(Noise)、偏差(Bias)和方差(Variance)。

  • 样本真实噪音:是任何学习算法在该学习目标上的期望误差的下界,即刻画了学习问题本身的难度。这是由数据本身的特性所决定的,无法通过优化模型来减少。
  • 偏差:度量了某种学习算法的平均估计结果所能逼近学习目标的程度,即刻画了模型的拟合能力和准确性。偏差越小,说明模型的拟合能力越强,预测结果越接近真实值。
  • 方差:度量了在面对同样规模的不同训练集时,学习算法的估计结果发生变动的程度,即刻画了模型对数据扰动的敏感性。方差越小,说明模型对数据扰动的鲁棒性越强,不会因为训练集的微小变化而导致预测结果的剧烈波动。

需要注意的是,偏差和方差通常是相互矛盾的,即偏差的减小可能导致方差的增加,反之亦然。因此,在选择模型时,需要综合考虑偏差和方差之间的平衡,以及噪声对模型性能的影响,从而选择出最优的模型。

总的来说,偏差-方差分解提供了一种从偏差和方差的角度来解释学习算法泛化性能的方法,有助于我们更好地理解模型的性能表现,并指导我们进行模型选择和优化。

好,我们来了解过拟合与欠拟合。 

过拟合和欠拟合是机器学习和人工智能领域中两种常见的问题,它们描述了模型在训练数据和新数据上的表现差异。理解这两种现象对于构建有效的模型至关重要。

过拟合:

定义:过拟合是指模型在训练数据集上表现良好,但在测试数据集上表现较差。这通常是因为模型过于复杂,以至于它学到了训练数据中的噪声或特定特征,而没有学到真实的、可以泛化到新数据的规律。

原理:在训练过程中,模型的参数(特别是权重)被过度拟合,导致模型无法区分真实世界中的数据点和噪声。模型变得对训练数据过于敏感,失去了泛化到新数据的能力。

使用场景:过拟合通常发生在模型复杂度过高,或者训练数据量不足的情况下。例如,在图像识别任务中,如果模型参数过多,而训练图像数量有限,就容易出现过拟合。

避免方法:

  1. 增加训练样本数量:通过收集更多的数据或使用数据增强的技术来增加训练样本的数量,可以帮助模型学习到更多的真实规律,减少过拟合。
  2. 简化模型结构:适当降低模型的复杂度,如减少网络层数、神经元个数等,可以降低模型对训练数据中的噪声的敏感性。
  3. 使用权重正则化:在损失函数中加入对权重的惩罚项,如L1正则化或L2正则化,可以限制模型参数的规模,防止过拟合。
  4. 使用dropout:在训练过程中随机“关闭”一部分神经元,可以减少模型的参数数量,从而降低过拟合的风险。
  5. 数据扩增:通过对训练数据进行变换(如旋转、平移、缩放等)来人为地增加数据量,提高模型的泛化能力。

欠拟合:

定义:欠拟合指的是模型无法充分学习训练集的规律,导致模型在训练集和测试集上表现都不佳。这通常是因为模型过于简单,无法捕捉到数据中的所有关系和结构。

原理:模型的复杂度不足以捕捉数据的内在规律,导致模型在训练和预测时都表现不佳。欠拟合的模型具有较高的偏差(bias),这意味着它们在预测时会倾向于产生较大的误差。

使用场景:欠拟合通常发生在模型复杂度过低,或者特征选择不当的情况下。例如,在文本分类任务中,如果仅使用简单的词袋模型而忽略词序和语义信息,就容易出现欠拟合。

避免方法:

  1. 添加新特征:当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。可以尝试添加更多的相关特征或使用特征工程技术来提取更有用的特征。
  2. 增加模型复杂度:通过增加模型的复杂度来提高其拟合能力。例如,在神经网络模型中增加网络层数或神经元个数等。
  3. 减小正则化系数:正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数,以允许模型更灵活地拟合数据。

需要注意的是,在实际情况中,过拟合和欠拟合可能同时存在。因此,在选择模型和优化策略时,需要综合考虑偏差和方差之间的平衡,以及数据的特性。通过不断地调整模型复杂度、特征选择和训练策略,可以找到最适合当前任务的模型。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/427921.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自建Redis蜜罐以捕获和分析潜在攻击

一、引言 随着网络攻击的日益频繁和复杂,传统的防御措施往往难以应对。蜜罐作为一种主动防御技术,通过模拟有价值的服务来吸引攻击者,从而收集和分析攻击数据,提高网络安全性。本文将介绍如何自建一个Redis蜜罐,以捕获…

转转测试环境docker化实践

【软件测试面试突击班】2024吃透软件测试面试最全八股文攻略教程,一周学完让你面试通过率提高90%!(自动化测试) 测试环境对于任何一个软件公司来讲,都是核心基础组件之一。转转的测试环境伴随着转转的发展也从单一的几…

【开源】JAVA+Vue.js实现农家乐订餐系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户2.2 管理员 三、系统展示四、核心代码4.1 查询菜品类型4.2 查询菜品4.3 加购菜品4.4 新增菜品收藏4.5 新增菜品留言 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的农家乐订餐系统&#xff0c…

MS1030超声波流量高精度测量电路

产品简述 MS1030 是一款针对超声波流量高精度测量电路,它具有高 精度,高稳定性,高效率的特点。它的测量精度 15ps ,测量范 围 500ns  4ms4MHz 。在第一波模式情况下,内部比较器的 offset 可编程范围为 127…

type.GetFields() 获取不到,改用type.DeclaredFields

StatisticQuery 类 private Dictionary<string, DateTime> GetTBHBDate(StatisticQuery model, string field){Dictionary<string, DateTime> dic new Dictionary<string, DateTime>();DateTime TB new DateTime();//同比开始日期 &#xff08;年&#xff…

计网面试题整理下

1. HTTP常见的状态码有哪些&#xff1f; 常见状态码&#xff1a; 200&#xff1a;服务器已成功处理了请求。 通常&#xff0c;这表示服务器提供了请求的网页。301 &#xff1a; (永久移动) 请求的网页已永久移动到新位置。 服务器返回此响应(对 GET 或 HEAD 请求的响应)时&am…

揭秘测试工程师的6大必备技能!你也常遇到这个问题吗?

作为一名Tester&#xff0c;无论是面试还是工作&#xff0c;我们都常常会遇到该问题&#xff0c;毕竟现在大部分接手的项目都是中小型的项目&#xff0c;很多又是生疏行业的系统&#xff0c;所以这个问题就会常常伴随我们&#xff0c;那么遇到这个问题该怎么办呢&#xff0c;现…

淘宝1688京东商品采集API接口系列,item_get-获得淘宝商品详情

请求示例&#xff0c;API接口接入Anzexi58 商品采集API接口系列 商品搜索API&#xff1a; 功能&#xff1a;根据关键词、分类、价格范围等条件搜索商品。参数&#xff1a;关键词、分类ID、价格范围、品牌等。返回&#xff1a;商品列表&#xff0c;包括商品ID、名称、价格、图片…

【C++练级之路】【Lv.10】【STL】priority_queue类和反向迭代器的模拟实现

快乐的流畅&#xff1a;个人主页 个人专栏&#xff1a;《C语言》《数据结构世界》《进击的C》 远方有一堆篝火&#xff0c;在为久候之人燃烧&#xff01; 文章目录 一、仿函数1.1 仿函数的介绍1.2 仿函数的优势 二、priority_queue2.1 push2.2 pop2.3 top2.4 size2.5 empty 三、…

[Java 探索之路~大数据篇] 新时代大数据流处理入门指南

本文主要介绍大数据基础&#xff0c;以及 flink 流计算 文章目录 【基础知识】1. 批处理与流处理1.批处理2.流处理 2. 为什么需要一个优秀的流处理框架1. 股票交易的业务场景2.生产者——消费者模型3. 流处理框架要解决的诸多问题&#xff08;1&#xff09;可扩展性&#xff08…

自定义View中的ListView和ScrollView嵌套的问题

当我们在使用到ScrollView和ListView的时候可能会出现显示不全的问题。那我们可以进行以下分析 ScrollView在测量子布局的时候会用UNSPECIFIED。通过源码观察&#xff0c; 在ScrollView的onMeasure方法中 Overrideprotected void onMeasure(int widthMeasureSpec, int heightMe…

C++ 类的大小 原理+详细计算示例

大小的组成 类的大小受&#xff1a;基类&#xff0c;成员&#xff0c;虚基表指针&#xff0c;虚函数表指针 影响。 计算方式 需要按照下列要素对齐和规则计算对齐&#xff1a; 对齐要素 编译器默认对齐数 根据环境改变&#xff0c;一般32位为4&#xff0c;64位为8。 有效…

KMP算法模板

KMP算法模板 自用&#xff0c;相关题解参考

电瓶车充电安全谈|南京小区15死44伤火灾背后的思考

今年2月23日&#xff0c;南京雨花台区明尚西苑居民楼发生了一起重大火灾事故&#xff0c;在事故中&#xff0c;共有59人受到不同程度的伤害&#xff0c;遇难的有15人&#xff0c;另有44人在医院接受治疗。 南京雨花台区火灾的发生无疑是一场令人痛心的悲剧&#xff0c;这场事故…

如何在 Linux 中快速清空文件而不删除它们?

在Linux系统中&#xff0c;清空文件而不删除它们是一种常见的需求&#xff0c;特别是在需要保留文件结构或权限的情况下。本文将详细介绍如何在Linux环境中快速清空文件内容的多种方法&#xff0c;以及每种方法的优缺点。清空文件通常涉及到文件内容的擦除&#xff0c;但并不涉…

【MySQL】事务管理 -- 详解

一、前言 CURD 不加控制&#xff0c;会有什么问题&#xff1f; CURD 满足什么属性&#xff0c;能解决上述问题&#xff1f; 买票的过程得是原子的。买票应该不能受互相的影响。买完票应该要永久有效。买前和买后都要是确定的状态。 什么是事务&#xff1f; 事务就是一组 DML…

DCTNet

DCTNet http://giantpandacv.com/academic/%E7%AE%97%E6%B3%95%E7%A7%91%E6%99%AE/%E9%A2%91%E5%9F%9F%E4%B8%AD%E7%9A%84CNN/CVPR%202020%20%E5%9C%A8%E9%A2%91%E5%9F%9F%E4%B8%AD%E5%AD%A6%E4%B9%A0%E7%9A%84DCTNet/ 一个对输入图像进行频域转换和选择的方法&#xff0c;达到…

Timeout while connecting to “172.168.252.245:161

Timeout while connecting to “172.168.252.245:161” 现象 排查过程 交换机型号H3C&#xff0c;交换机采用SNMPV3协议对接zabbix&#xff0c;交换机配置如下 snmp-agent sys-info version all snmp-agent group v3 zabbix_group privacy read-view isoview snmp-agent …

本地安装部署Flask并结合内网穿透实现远程访问本地web界面

文章目录 1. 安装部署Flask2. 安装Cpolar内网穿透3. 配置Flask的web界面公网访问地址4. 公网远程访问Flask的web界面 本篇文章主要讲解如何在本地安装Flask&#xff0c;以及如何将其web界面发布到公网进行远程访问。 Flask是目前十分流行的web框架&#xff0c;采用Python编程语…

windows下的反调试探究——调用API

NtGlobalFlag 在 32 位机器上&#xff0c;NtGlobalFlag字段位于PEB的0x68的偏移处&#xff0c;64 位机器则是在偏移0xBC位置&#xff0c;该字段的默认值为 0。当调试器正在运行时&#xff0c;该字段会被设置为一个特定的值 该字段包含有一系列的标志位&#xff0c;由调试器创…