Leetcoder Day37| 动态规划part04 背包问题

01背包理论基础

面试掌握01背包,完全背包和重背包就够用了。

背包问题的理论基础重中之重是01背包,一定要理解透!

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是o(2^n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

举例:背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维数组01背包

依然动规五部曲分析一波。

1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的。

2.  确定递推公式

有两个方向可以推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量或背包剩余重量小于i的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值。

所以dp[i][j]= max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

3. dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。i是由i-1推出来的,所以i为0的时候就一定要初始化。刚才讨论过j=0的情况,那么i=0时,dp[0][j],即:存放编号0的物品时,各个容量的背包所能存放的最大价值。因此 j < weight[0]时,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。若j>=weight[0],dp[0][j]的值为value[0]。

dp[0][j] 和 dp[i][0] 初始化以后,其他位置都会从i-1或者j-weight[i]而来,因此都会被不断地覆盖,所以初始化为0即可。

4. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量,从哪个方向遍历都可以,因此我们就从物品开始遍历。

public static void backValue(int[]value, int[] weight, int bagWeight){
        int num=value.length;
        int[][]dp=new int[num][bagWeight+1];
        for(int j=weight[0];j<bagWeight;j++){
            dp[0][j]=value[0];
        }
        for(int i=1;i<num;i++){//从物品开始遍历
            for(int j=1;j<=bagWeight;j++){
                if(j<weight[i]) dp[i][j]=dp[i-1][j];
                else{
                    dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
                }
            }
        }
         System.out.println(dp[num-1][bagWeight]);
    }   

一维数组01背包

上面的思路是用二维数组来解决01背包问题,还可以用滚动数组来解决,即把二维dp降维。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

因此,动规五部曲分析如下:

1. 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2. 一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值。

所以递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

3. 一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

4. 一维dp数组遍历顺序

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

因为倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

为什么二维dp数组遍历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

⚠️一维和二维的区别:(1)一维到序遍历,二维正序遍历(2)一维只能先遍历物品再遍历背包,但是二维两个顺序都可。

public static void getBackValue(int[]value, int[] weight, int bagWeight){
        int num=value.length;
        int[]dp=new int[bagWeight+1];
        for(int j=weight[0];j<bagWeight;j++){
            dp[j]=value[0];
        }
        for(int i=1;i<num;i++){//从物品开始遍历
            for(int j=bagWeight;j>=weight[i];j--){//要倒序遍历
               dp[j]=Math.max(dp[j], dp[j-weight[i]]+value[i]);
            }
        }
        System.out.println(dp[bagWeight]);
    }   

416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

  • 输入: [1, 2, 3, 5]
  • 输出: false
  • 解释: 数组不能分割成两个元素和相等的子集.

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

这道题希望能够将一个数组拆成两个子集a和b,使得a里面的元素和等于b里面的元素和。

没有什么思路,直接看了代码随想录。原来是01背包问题的变种。

01背包问题:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

注意题目描述中商品是不是可以重复放入。一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。(这一点是我没有想到的)

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来:

  • 背包的可容纳的重量为sum / 2
  • 背包要放入的商品(集合里的元素)重量为元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入

dp[j]表示:背包总容量是j,放进物品后,背包的最大价值为dp[j]

那么如果背包需要满足的容量为target,当dp[target]==target时,背包就装满了

class Solution {
    /**
    背包的可容纳的重量为sum / 2
    背包要放入的商品(集合里的元素)重量为元素的数值,价值也为元素的数值
    背包如果正好装满,说明找到了总和为 sum / 2 的子集。
    背包中每一个元素是不可重复放入
     */
    public boolean canPartition(int[] nums) {
        int sum=0;
        for(int i=0;i<nums.length;i++){
            sum+=nums[i];
        }
        if(sum%2==1) return false;
        int target=sum/2;
        //weight[i]和value[i]都是nums[i],当前的bacWeight为target
        int[] dp=new int[target+1];
        for(int j=nums[0];j<target;j++){
            dp[j]=nums[0];
        }
        for(int i=1;i<nums.length;i++){ //先遍历物品
            for(int j=target;j>=nums[i];j--){//重量要倒序遍历
                dp[j]=Math.max(dp[j], dp[j-nums[i]]+nums[i]);
            }
        }
        if(dp[target]==target) return true;
        return false;

    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/426532.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[Redis]——Redis命令手册set、list、sortedset

&#x1f333;List类型常见命令 LPUSH / RPUSH [KEY] [element] …… 向列表左侧或者右侧插入一个或多个元素 LPOP / RPOP [key] 删除左边或者右边第一个元素 LRANGE [key] start end 返回索引start到end的元素&#xff08;索引从0开始&#xff09; BLPOP / BRPOP [key] [等…

Flink 定义 Temporal Table 的两种方式:Temporal Table DDL 和 Temporal Table Function

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

小程序环形进度条爬坑

在做微信小程序的时候&#xff0c;发现用canvas做的环形进度条&#xff0c;在带滚动条的view里面显示有闪动、显示不全的问题&#xff0c;后面改成echart-weixin的pie图实现了&#xff0c;option配置如下 // 表示进度的百分比 var progressValue 70;option {series: [{type: …

GC机制以及Golang的GC机制详解

要了解Golang的GC机制,就需要了解什么事GC,以及GC有哪几种实现方式 一.什么是GC 当一个电脑上的动态内存不再需要时&#xff0c;就应该予以释放&#xff0c;以让出内存&#xff0c;这种内存资源管理&#xff0c;称为垃圾回收&#xff08;Garbage Collection&#xff09;&#x…

黑马点评-短信登录业务

原理 模型如下 nginx nginx基于七层模型走的事HTTP协议&#xff0c;可以实现基于Lua直接绕开tomcat访问redis&#xff0c;也可以作为静态资源服务器&#xff0c;轻松扛下上万并发&#xff0c; 负载均衡到下游tomcat服务器&#xff0c;打散流量。 我们都知道一台4核8G的tomca…

RH850P1X芯片学习笔记-Generic Timer Module -ATOM

文章目录 ARU-connected Timer Output Module (ATOM)OverviewGLOBAL CHANNEL CONTROL BLOCK ATOM Channel architectureATOM Channel modesSOMP-Signal Output Mode PWMSOMP - ARUSOMC-Signal Output Mode CompareSOMC - ARUSOMC – COMPARE COMMANDSOMC – OUTPUT ACTIONATOM …

智慧城市中的公共服务创新:让城市生活更便捷

目录 一、引言 二、智慧城市公共服务创新的实践 1、智慧交通系统 2、智慧医疗服务 3、智慧教育系统 4、智慧能源管理 三、智慧城市公共服务创新的挑战 四、智慧城市公共服务创新的前景 五、结论 一、引言 随着信息技术的迅猛发展&#xff0c;智慧城市已成为现代城市发…

failed to connect to ‘127.0.0.1:58526‘: Connection refused

WSA使用体验 链接&#xff1a; 知乎-穿越时间一步到位&#xff0c;教你完美安装Windows 11 Android 安卓子系统 CPU不满足要求 明明是12700H&#xff0c;满足要求&#xff0c;但是应用商店说不满足&#xff0c;在设置&#xff08;注意不是控制面板的区域&#xff09;把地区改…

第二天 Kubernetes落地实践之旅

第二天 Kubernetes落地实践之旅 本章学习kubernetes的架构及工作流程&#xff0c;重点介绍如何使用Workload管理业务应用的生命周期&#xff0c;实现服务不中断的滚动更新&#xff0c;通过服务发现和集群内负载均衡来实现集群内部的服务间访问&#xff0c;并通过ingress实现外…

RabbitMQ队列

RabbitMQ队列 1、死信的概念 ​ 先从概念解释上搞清楚这个定义&#xff0c;死信&#xff0c;顾名思义就是无法被消费的消息&#xff0c;字面意思可以这样理解&#xff0c;一般来说,producer将消息投递到broker或者直接到queue里了&#xff0c;consumer 从 queue取出消息进行消…

浅析虚函数的vptr和虚函数表

浅析虚函数的vptr和虚函数表 文章目录 浅析虚函数的vptr和虚函数表前言1. 基础理论2. 实现与内部结构 前言 ​ 为了实现虚函数&#xff0c;C使用一种称为虚拟表的特殊形式的后期绑定。该虚拟表是用于解决在动态/后期绑定方式的函数调用函数的查找表。虚拟表有时会使用其他名称…

【STM32+HAL】七针OLED(SSD1306)配置(SPI版)

一、前言 关于四针OLED的I2C版配置方式&#xff0c;请转至【STM32HAL】OLED显示初始化配置 二、实现功能&#xff1a; 用SPI通信方式初始化OLED显示&#xff08;相较于I2C速度更快&#xff09; 三、方法一&#xff1a;硬件SPI通信 1、打开SPI通信&#xff08;仅传输&#xf…

互联网加竞赛 车位识别车道线检测 - python opencv

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) …

苍穹外卖Day05——总结5

前期文章 文章标题地址苍穹外卖Day01——总结1https://lushimeng.blog.csdn.net/article/details/135466359苍穹外卖Day01——解决总结1中存在的问题https://lushimeng.blog.csdn.net/article/details/135473412苍穹外卖Day02——总结2https://lushimeng.blog.csdn.net/articl…

STM32-SPI通信协议

串行外设接口SPI&#xff08;Serial Peripheral Interface&#xff09;是由Motorola公司开发的一种通用数据总线。 在某些芯片上&#xff0c;SPI接口可以配置为支持SPI协议或者支持I2S音频协议。 SPI接口默认工作在SPI方式&#xff0c;可以通过软件把功能从SPI模式切换…

【计算机网络】HTTPS 协议原理

https 一、HTTPS 是什么二、加密1. 加密概念2. 加密的原因3. 常见的加密方式&#xff08;1&#xff09;对称加密&#xff08;2&#xff09;非对称加密 三、数据摘要(数据指纹)四、HTTPS 的工作原理探究1. 只使用对称加密2. 只使用非对称加密3. 双方都使用非对称加密4. 非对称加…

java 实现图片新增水印(动态计算水印背景 + 水印文字),附带文字乱码解决方案

文章目录 概要实现流程代码如下小结 概要 图片增加水印背景以及水印文字&#xff0c;根据文字内容是否换行&#xff0c;以及文字行高大小自适应计算背景大小 结果图如下&#xff1a; 实现流程 定义图片来源&#xff0c;以及读取字体来源(防止中文乱码)计算文字所需高度 与…

云上攻防-云原生篇KubernetesK8s安全APIKubelet未授权访问容器执行

知识点 1、云原生-K8s安全-名词架构&各攻击点 2、云原生-K8s安全-Kubelet未授权访问 3、云原生-K8s安全-API Server未授权访问 章节点&#xff1a; 云场景攻防&#xff1a;公有云&#xff0c;私有云&#xff0c;混合云&#xff0c;虚拟化集群&#xff0c;云桌面等 云厂商…

PyInstaller 打包 Python 应用程序一键双击运行

PyInstaller 打包 Python 应用程序一键双击运行 作为一个词语&#xff0c;“活着”在语言里充满了力量&#xff0c;它的力量不是来自于喊叫&#xff0c;也不是来自于进攻&#xff0c;而是忍受&#xff0c;去忍受生命赋予我们的责任&#xff0c;去忍受现实给予我们的幸福和苦难、…

独立游戏《星尘异变》UE5 C++程序开发日志2——创建并编写一个C++类

在本篇日志中&#xff0c;我们将要用一个C类来实现一个游戏内的物品&#xff0c;同时介绍UCLASS、USTRUCT、UPROPERTY的使用 一、创建一个C类 我们在UE5的"内容侧滑菜单"中&#xff0c;在右侧空白中右键选择"新建C类"&#xff0c;然后可以选择一个想要的…