14-Linux部署Hadoop集群

Linux部署Hadoop集群

简介

1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
2)主要解决,海量数据的存储和海量数据的分析计算问题。

Hadoop HDFS 提供分布式海量数据存储能力

Hadoop YARN 提供分布式集群资源管理能力

Hadoop MapReduce 提供分布式海量数据计算能力

前置要求

  • 请确保完成了集群化环境前置准备章节的内容
  • 即:JDK、SSH免密、关闭防火墙、配置主机名映射等前置操作

参考文章:

11-Linux部署集群准备:http://t.csdnimg.cn/zWbnd

Hadoop集群角色

Hadoop生态体系中总共会出现如下进程角色:

  1. Hadoop HDFS的管理角色:Namenode进程(仅需1个即可(管理者一个就够)
  2. Hadoop HDFS的工作角色:Datanode进程(需要多个(工人,越多越好,一个机器启动一个)
  3. Hadoop YARN的管理角色:ResourceManager进程(仅需1个即可(管理者一个就够)
  4. Hadoop YARN的工作角色:NodeManager进程(需要多个(工人,越多越好,一个机器启动一个)
  5. Hadoop 历史记录服务器角色:HistoryServer进程(仅需1个即可(功能进程无需太多1个足够)
  6. Hadoop 代理服务器角色:WebProxyServer进程(仅需1个即可(功能进程无需太多1个足够)
  7. Zookeeper的进程:QuorumPeerMain进程(仅需1个即可(Zookeeper的工作者,越多越好)

角色和节点分配

角色分配如下:

  1. node1:Namenode、Datanode、ResourceManager、NodeManager、HistoryServer、WebProxyServer、QuorumPeerMain
  2. node2:Datanode、NodeManager、QuorumPeerMain
  3. node3:Datanode、NodeManager、QuorumPeerMain

image-20221026202935745

安装

调整虚拟机内存

如上图,可以看出node1承载了太多的压力。同时node2和node3也同时运行了不少程序

为了确保集群的稳定,需要对虚拟机进行内存设置。

请在VMware中,对:

  1. node1设置4GB或以上内存
  2. node2和node3设置2GB或以上内存

大数据的软件本身就是集群化(一堆服务器)一起运行的。

现在我们在一台电脑中以多台虚拟机来模拟集群,确实会有很大的内存压力哦。

Zookeeper集群部署

Hadoop集群部署

  1. 下载Hadoop安装包、解压、配置软链接

    • 下载
    wget --no-check-certificate http://archive.apache.org/dist/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz
    
    • 解压
    # 请确保目录/export/server存在
    tar -zxvf hadoop-3.3.0.tar.gz -C /export/server/
    
    • 软链接
    ln -s /export/server/hadoop-3.3.0 /export/server/hadoop
    
  2. 修改配置文件:hadoop-env.sh

    Hadoop的配置文件要修改的地方很多,请细心

    cd 进入到/export/server/hadoop/etc/hadoop,文件夹中,配置文件都在这里

    修改hadoop-env.sh文件

    cd /export/server/hadoop/etc/hadoop
    vim hadoop-env.sh
    

    此文件是配置一些Hadoop用到的环境变量

    这些是临时变量,在Hadoop运行时有用

    如果要永久生效,需要写到/etc/profile中

    # 在文件开头加入:
    # 配置Java安装路径
    export JAVA_HOME=/export/server/jdk
    # 配置Hadoop安装路径
    export HADOOP_HOME=/export/server/hadoop
    # Hadoop hdfs配置文件路径
    export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
    # Hadoop YARN配置文件路径
    export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
    # Hadoop YARN 日志文件夹
    export YARN_LOG_DIR=$HADOOP_HOME/logs/yarn
    # Hadoop hdfs 日志文件夹
    export HADOOP_LOG_DIR=$HADOOP_HOME/logs/hdfs
    
    # Hadoop的使用启动用户配置
    export HDFS_NAMENODE_USER=root
    export HDFS_DATANODE_USER=root
    export HDFS_SECONDARYNAMENODE_USER=root
    export YARN_RESOURCEMANAGER_USER=root
    export YARN_NODEMANAGER_USER=root
    export YARN_PROXYSERVER_USER=root
    
  3. 修改配置文件:core-site.xml

    如下,清空文件,填入如下内容

    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <!--
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
    
        http://www.apache.org/licenses/LICENSE-2.0
    
      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License. See accompanying LICENSE file.
    -->
    
    <!-- Put site-specific property overrides in this file. -->
    <configuration>
      <property>
        <name>fs.defaultFS</name>
        <value>hdfs://node1:8020</value>
        <description></description>
      </property>
    
      <property>
        <name>io.file.buffer.size</name>
        <value>131072</value>
        <description></description>
      </property>
    </configuration>
    
  4. 配置:hdfs-site.xml文件

    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <!--
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
    
        http://www.apache.org/licenses/LICENSE-2.0
    
      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License. See accompanying LICENSE file.
    -->
    
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
        <property>
            <name>dfs.datanode.data.dir.perm</name>
            <value>700</value>
        </property>
    
      <property>
        <name>dfs.namenode.name.dir</name>
        <value>/data/nn</value>
        <description>Path on the local filesystem where the NameNode stores the namespace and transactions logs persistently.</description>
      </property>
    
      <property>
        <name>dfs.namenode.hosts</name>
        <value>node1,node2,node3</value>
        <description>List of permitted DataNodes.</description>
      </property>
    
      <property>
        <name>dfs.blocksize</name>
        <value>268435456</value>
        <description></description>
      </property>
    
    
      <property>
        <name>dfs.namenode.handler.count</name>
        <value>100</value>
        <description></description>
      </property>
    
      <property>
        <name>dfs.datanode.data.dir</name>
        <value>/data/dn</value>
      </property>
    </configuration>
    
  5. 配置:mapred-env.sh文件

    # 在文件的开头加入如下环境变量设置
    export JAVA_HOME=/export/server/jdk
    export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000
    export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA
    
  6. 配置:mapred-site.xml文件

    <?xml version="1.0"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <!--
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
    
        http://www.apache.org/licenses/LICENSE-2.0
    
      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License. See accompanying LICENSE file.
    -->
    
    <!-- Put site-specific property overrides in this file. -->
    
    <configuration>
      <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
        <description></description>
      </property>
    
      <property>
        <name>mapreduce.jobhistory.address</name>
        <value>node1:10020</value>
        <description></description>
      </property>
    
    
      <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>node1:19888</value>
        <description></description>
      </property>
    
    
      <property>
        <name>mapreduce.jobhistory.intermediate-done-dir</name>
        <value>/data/mr-history/tmp</value>
        <description></description>
      </property>
    
    
      <property>
        <name>mapreduce.jobhistory.done-dir</name>
        <value>/data/mr-history/done</value>
        <description></description>
      </property>
    <property>
      <name>yarn.app.mapreduce.am.env</name>
      <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
    </property>
    <property>
      <name>mapreduce.map.env</name>
      <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
    </property>
    <property>
      <name>mapreduce.reduce.env</name>
      <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
    </property>
    </configuration>
    
  7. 配置:yarn-env.sh文件

    # 在文件的开头加入如下环境变量设置
    export JAVA_HOME=/export/server/jdk
    export HADOOP_HOME=/export/server/hadoop
    export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
    export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
    export YARN_LOG_DIR=$HADOOP_HOME/logs/yarn
    export HADOOP_LOG_DIR=$HADOOP_HOME/logs/hdfs
    
  8. 配置:yarn-site.xml文件

    <?xml version="1.0"?>
    <!--
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
    
        http://www.apache.org/licenses/LICENSE-2.0
    
      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License. See accompanying LICENSE file.
    -->
    <configuration>
    
    <!-- Site specific YARN configuration properties -->
    <property>
        <name>yarn.log.server.url</name>
        <value>http://node1:19888/jobhistory/logs</value>
        <description></description>
    </property>
    
      <property>
        <name>yarn.web-proxy.address</name>
        <value>node1:8089</value>
        <description>proxy server hostname and port</description>
      </property>
    
    
      <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
        <description>Configuration to enable or disable log aggregation</description>
      </property>
    
      <property>
        <name>yarn.nodemanager.remote-app-log-dir</name>
        <value>/tmp/logs</value>
        <description>Configuration to enable or disable log aggregation</description>
      </property>
    
    
    <!-- Site specific YARN configuration properties -->
      <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>node1</value>
        <description></description>
      </property>
    
      <property>
        <name>yarn.resourcemanager.scheduler.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
        <description></description>
      </property>
    
      <property>
        <name>yarn.nodemanager.local-dirs</name>
        <value>/data/nm-local</value>
        <description>Comma-separated list of paths on the local filesystem where intermediate data is written.</description>
      </property>
    
    
      <property>
        <name>yarn.nodemanager.log-dirs</name>
        <value>/data/nm-log</value>
        <description>Comma-separated list of paths on the local filesystem where logs are written.</description>
      </property>
    
    
      <property>
        <name>yarn.nodemanager.log.retain-seconds</name>
        <value>10800</value>
        <description>Default time (in seconds) to retain log files on the NodeManager Only applicable if log-aggregation is disabled.</description>
      </property>
    
    
    
      <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
        <description>Shuffle service that needs to be set for Map Reduce applications.</description>
      </property>
    </configuration>
    
  9. 修改workers文件

    # 全部内容如下
    node1
    node2
    node3
    
  10. 分发hadoop到其它机器

# 在node1执行
cd /export/server

scp -r hadoop-3.3.0 node2:`pwd`/
scp -r hadoop-3.3.0 node3:`pwd`/
  1. 在node2、node3执行

    # 创建软链接
    ln -s /export/server/hadoop-3.3.0 /export/server/hadoop
    
  2. 创建所需目录

    • 在node1执行:

      mkdir -p /data/nn
      mkdir -p /data/dn
      mkdir -p /data/nm-log
      mkdir -p /data/nm-local
      
    • 在node2执行:

      mkdir -p /data/dn
      mkdir -p /data/nm-log
      mkdir -p /data/nm-local
      
    • 在node3执行:

      mkdir -p /data/dn
      mkdir -p /data/nm-log
      mkdir -p /data/nm-local
      
  3. 配置环境变量

    在node1、node2、node3修改/etc/profile

    export HADOOP_HOME=/export/server/hadoop
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
    

    执行source /etc/profile生效

  4. 格式化NameNode,在node1执行(注意请不要重复格式化,重复格式化会出现DataNode进程没有加载,解决方法看最后

    hadoop namenode -format
    

    hadoop这个命令来自于:$HADOOP_HOME/bin中的程序

    由于配置了环境变量PATH,所以可以在任意位置执行hadoop命令哦

  5. 启动hadoop的hdfs集群,在node1执行即可

    start-dfs.sh
    
    # 如需停止可以执行
    stop-dfs.sh
    

    start-dfs.sh这个命令来自于:$HADOOP_HOME/sbin中的程序

    由于配置了环境变量PATH,所以可以在任意位置执行start-dfs.sh命令哦

  6. 启动hadoop的yarn集群,在node1执行即可

    start-yarn.sh
    
    # 如需停止可以执行
    stop-yarn.sh
    
  7. 启动历史服务器

    mapred --daemon start historyserver
    
    # 如需停止将start更换为stop
    
  8. 启动web代理服务器

    yarn-daemon.sh start proxyserver
    
    # 如需停止将start更换为stop
    
验证Hadoop集群运行情况
  1. 在node1、node2、node3上通过jps验证进程是否都启动成功

  2. 验证HDFS,浏览器打开:http://192.168.149.131:9870

    image-20240228190509251

    创建文件test.txt,随意填入内容,并执行:

    hadoop fs -put test.txt /test.txt
    
    hadoop fs -cat /test.txt
    
  3. 验证YARN,浏览器打开:http://192.168.149.131:8088

    执行:

    # 创建文件test.txt,填入如下内容
    bowen bowen hadoop
    jiaqi hadoop hadoop
    jiaqi bowen
    
    # 将文件上传到HDFS中
    hadoop fs -put test.txt /test.txt
    
    # 执行如下命令验证YARN是否正常
    hadoop jar /export/server/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.0.jar wordcount -Dmapred.job.queue.name=root.root /test.txt /output
    

image-20240228190616776

重复格式化NameNode导致DataNode进程没有加载

问题描述:

重复使用以下命令,导致namenode与datanode之间的不一致,最终DataNode进程没有启动

hadoop namenode -format

解决方案:

  • 关闭Hadoop程序
stop-all.sh
  • 进入Hadoop的安装目录找到etc/hadoop/目录下的hdfs-site.xml文件
cd /export/server/hadoop-3.3.0/etc/hadoop
  • 使用vim命令查看hdfs-site.xml,找到该文件中的datanode的存放路径
vim hdfs-site.xml

image-20240228191630101

  • 在node1、node2、node3都进行以下操作(删除datanode的存放路径下的所有文件)
rm -rf /data/dn/*
  • 重新格式化
hadoop namenode -format
  • 启动集群
start-all.sh
  • 使用jps命令查看进程
jps

image-20240228192215889

可以看到启动成功了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/424529.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

R语言使用dietaryindex包计算NHANES数据多种健康饮食指数 (HEI等)(1)

健康饮食指数 (HEI) 是评估一组食物是否符合美国人膳食指南 (DGA) 的指标。Dietindex包提供用户友好的简化方法&#xff0c;将饮食摄入数据标准化为基于指数的饮食模式&#xff0c;从而能够评估流行病学和临床研究中对这些模式的遵守情况&#xff0c;从而促进精准营养。 该软件…

【C++】string 类 ( 上)

标准库中的string类 注意&#xff1a; 1. string是表示字符串的字符串类 2. 该类的接口与常规容器的接口基本相同&#xff0c;再添加了一些专门用来操作string的常规操作。 比特就业课 3. string在底层实际是&#xff1a;basic_string模板类的别名&#xff0c;typedef basi…

RFID(Radio Frequency Identification)技术笔记

一、RFID的介绍 RFID&#xff0c;全称为Radio Frequency Identification&#xff0c;即射频识别技术&#xff0c;也常被称为电子标签或无线射频识别。它是一种非接触式的自动识别技术&#xff0c;通过射频信号自动识别目标对象并获取相关数据&#xff0c;识别过程无需人工干预&…

LeetCode 刷题 [C++] 第45题.跳跃游戏 II

题目描述 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 < j < nums[i]i j < n 返回到达 nums[n …

金融行业专题|期货超融合架构转型与场景探索合集(2023版)

更新内容&#xff1a; 更新 SmartX 超融合在期货行业的覆盖范围、部署规模与应用场景。新增 CTP 主席系统实践与评测、容器云资源池等场景实践。更多超融合金融核心生产业务场景实践&#xff0c;欢迎下载阅读电子书《SmartX 金融核心生产业务场景探索文章合集》。 面对不断变…

【AI Agent系列】【MetaGPT多智能体学习】6. 多智能体实战 - 基于MetaGPT实现游戏【你说我猜】(附完整代码)

本系列文章跟随《MetaGPT多智能体课程》&#xff08;https://github.com/datawhalechina/hugging-multi-agent&#xff09;&#xff0c;深入理解并实践多智能体系统的开发。 本文为该课程的第四章&#xff08;多智能体开发&#xff09;的第四篇笔记。今天我们来完成第四章的作…

深度学习需要掌握哪些数学基础?

《深度学习的数学》这本书再合适不过了。作者罗纳德.T.纽塞尔&#xff08;Ronald T. Kneusel&#xff09;&#xff0c;拥有超过 20年的机器学习行业经验。 本书适合有一定深度学习基础、了解Python编程语言的读者阅读&#xff0c;也可作为用于拓展深度学习理论的参考书。 为什么…

SQL 术语:Join 中的 Build 和 Probe 是什么意思?

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

vue+springboot项目部署服务器

项目仓库&#xff1a;vuespringboot-demo: vuespringboot增删改查的demo (gitee.com) ①vue中修改配置 在public文件夹下新建config.json文件&#xff1a; {"serverUrl": "http://localhost:9090"//这里localhost在打包后记得修改为服务器公网ip } 然后…

Linux: Network: socket: sendto 如果返回0,是否一定代表发送成功?

最近遇到一个问题&#xff0c;虽然应用层使用的系统调用send已经返回成功&#xff0c;而且没有错误日志产生&#xff0c;也没有errno的设置。那是不是代表一定是没有问题&#xff1f;从抓包的结果看&#xff0c;虽然上层应用已经显示发出去&#xff0c;但是实际抓包的时候&…

WP外贸营销型网站模板

WordPress外贸独立站主题 简洁实用的WordPress外贸独立站主题&#xff0c;适合时尚服装行业搭建wordpress企业官网使用。 零件配件WordPress外贸建站模板 汽车行业零配件WordPress外贸建站模板&#xff0c;卖配件、零件的外贸公司可以使用的WordPress主题。 https://www.jia…

windows 系统上搭建 Phpstudy 集成环境 + DVWA 靶场!超详细教程!

作为安全测试或渗透测试学习者&#xff0c;需要搭建一些靶场来进行技术练习&#xff0c;靶场类型有很多&#xff0c;搭建方式也支持多样&#xff0c;本文给你详细介绍windows系统下如何通过phpstudy集成环境搭建DVWA靶场&#xff01; 一、前言 网站是由中间件、网站程序、数据库…

暗九之凶险,更甚于明九

俗话说“逢九必衰”&#xff0c;逢九年是人运程变化的一个过程&#xff0c;这是古人长期以来对于命运的一种总结。“九”是转弯之数&#xff0c;故 “逢九”之人当年的运程容易大起大落、易招变数&#xff0c;若是严重一些&#xff0c;则有可能会殒命在这一年&#xff0c;一定要…

【计算机网络通信】计算机之间的局域网通信和互联网通信方法(附Python和C#代码)

文章目录 前言一、局域网通信1.1 基本原理和方法1.1.1 获取本地ip1.1.2 实现局域网内的广播1.1.3 进行局域网通信 1.2 实现多客户端连接1.3 Python源码1.4 C#源码1.5 可能存在的问题 二、互联网通信2.1 实现原理2.1.1 内网穿透软件2.1.2 实现互联网通信 2.2 Python源码2.3 C#源…

中国电子学会2019年12月份青少年软件编程Scratch图形化等级考试试卷四级真题。

第 1 题 【 单选题 】 1.以下模块&#xff0c;可以“说”出“我喜欢Apple”的是&#xff1f; A&#xff1a; B&#xff1a; C&#xff1a; D&#xff1a; 2.某学校为教师外出提供车辆服务&#xff0c;当外出人数小于5人时&#xff0c;派轿车&#xff1b;当外出人数为5至7人的话…

初阶数据结构:二叉树

目录 1. 树的相关概念1.1 简述&#xff1a;树1.2 树的概念补充 2. 二叉树2.1 二叉树的概念2.2 二叉树的性质2.3 二叉树的存储结构与堆2.3.1 存储结构2.3.2 堆的概念2.3.3 堆的实现2.3.3.1 堆的向上调整法2.3.3.2 堆的向下调整算法2.3.3.3 堆的实现 1. 树的相关概念 1.1 简述&a…

链表基础知识详解(非常详细简单易懂)

概述&#xff1a; 链表作为 C 语言中一种基础的数据结构&#xff0c;在平时写程序的时候用的并不多&#xff0c;但在操作系统里面使用的非常多。不管是RTOS还是Linux等使用非常广泛&#xff0c;所以必须要搞懂链表&#xff0c;链表分为单向链表和双向链表&#xff0c;单向链表很…

[Linux]如何理解kernel、shell、bash

文章目录 概念总览kernelshell&bash 概念总览 内核(kernel) &#xff0c;外壳(shell) &#xff0c;bash kernel kernel是指操作系统中的核心部分&#xff0c;用户一般是不能直接使用kernel的。它主要负责管理硬件资源和提供系统服务&#xff0c;如内存管理、进程管理、文件…

国内chatgpt写作软件,chatgpt国内使用

随着人工智能技术的不断发展&#xff0c;国内涌现出了一些基于ChatGPT模型的写作软件&#xff0c;这些软件不仅能够实现智能化的文章写作&#xff0c;还支持批量生成各种类型的文章。本文将深入探讨国内ChatGPT写作软件&#xff0c;以及它们在批量文章创作方面的应用与优势。 C…

如何使用Docker搭建StackEdit编辑器并结合内网穿透实现远程办公

文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…