分类问题经典算法 | 二分类问题 | Logistic回归:公式推导

目录

  • 一. Logistic回归的思想
    • 1. 分类任务思想
    • 2. Logistic回归思想
  • 二. Logistic回归算法:线性可分推导

一. Logistic回归的思想

1. 分类任务思想

分类问题通常可以分为二分类,多分类任务;而对于不同的分类任务,训练的主要目标是不变的,即找到一个分类器,这个分类器可以对新输入的数据进行判断,以确定该数据是属于哪个类别

对于分类任务,我们常设函数为 A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0


下面我们先来讨论二分类任务:
在这里插入图片描述
对于有两个特征的分类任务来说,我们的目的是寻找一条决策边界,使得这两个特征可以被区分开,如上图:

假设我们认为,决策边界为 A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0
当输入一个新数据 ( x 1 0 , x 2 0 ) (x_{1_{0}},x_{2_{0}}) (x10,x20)
对于蓝色特征(右上方)就会得到:

A x 1 0 + B x 2 0 + C > 0 Ax_{1_{0}}+Bx_{2_{0}}+C > 0 Ax10+Bx20+C>0,即正样本

对于红色特征(左下方)就会得到:

A x 1 0 + B x 2 0 + C < 0 Ax_{1_{0}}+Bx_{2_{0}}+C < 0 Ax10+Bx20+C<0,即负样本

这里强调一点,对于分类任务:
     A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0描述的不再是特征与结果之间的关系,而是特征与特征之间的关系
    我们训练的目标,从将一个特征值带入方程来求另一个特征值变成了将两个特征值带入求 A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0的值

2. Logistic回归思想

Logistic回归算法并不满足于上述常规分类思想,而是在其基础上引入了概率的概念,即:

当输入一个新数据 ( x 1 0 , x 2 0 ) (x_{1_{0}},x_{2_{0}}) (x10,x20)

若该数据落在决策边界上:

该样本点是正样本或负样本的概率都是0.5

若该数据落在决策边界左下方,且距离决策边界越远:

该样本点为负样本的概率越大,为正样本的概率越小

若该数据落在决策边界右上方,且距离决策边界越远:

该样本点为正样本的概率越大,为负样本的概率越小


上述描述中,不难看出,Logistic回归是将距离与概率进行关联,那么具体怎样实现呢?

首先我们定义Logistic函数: y = 1 1 + e − x y = \frac{1}{1+e^{-x} } y=1+ex1
其中,x为样本点到决策边界的距离,即 A x 1 + B x 2 + C = 0 的值 Ax_{1}+Bx_{2}+C = 0的值 Ax1+Bx2+C=0的值

对于公式,简单解析下:

  1. 公式为什么会出现e?

求导方便

  1. 为什么公式中样本点到决策边界距离的计算方式与数学中不符?

数学中,点到直线的公式为 A x 0 + B y 0 + C A 2 + B 2 \frac{Ax_{0}+By_{0}+C }{\sqrt{A^{2}+ B^{2}} } A2+B2 Ax0+By0+C,其中 A 2 + B 2 \sqrt{A^{2}+ B^{2}} A2+B2 可以看作一个整数
公式中,我们求得的距离之所以没有除以 A 2 + B 2 \sqrt{A^{2}+ B^{2}} A2+B2 ,是因为每个点的相对距离是一样的

在这里插入图片描述
通过观察函数图像,我们可以看出这个函数非常符合Logistic回归思想:

	自变量x:样本点到决策边界的距离d
	因变量y:样本点属于正负样本的概率P
		
		当自变量为0时,P=0.5
		当自变量趋近-∞时,P趋近于0
		当自变量趋近+∞时,P趋近取1
	
	【注意】这里的距离是有正有负的

由于Logistic函数的形状类似于S,所以该函数又被称为Sigmoid函数

二. Logistic回归算法:线性可分推导

下面我们来具体聊Logistic回归算法,但在开始之前,我们先来明确分类的种类:

	对于二分类任务目标:我们需要寻找一个决策边界,从而达到将两类样本点区分的目的
	
	这里所谓的决策边界,即分类问题中进行分类决策的依据:
		对于二维空间,决策边界是一条直线
		对于三维空间,决策空间是一个平面
		对于多为空间,决策边界是一个超平面
	
	也就是说:
		当上面这些决策边界存在时,我们认为这些样本点是线性可分的
		当上面这些决策边界不存在时,我们认为这些样本点是线性不可分的;比如:找不到一条直线,将样本进行二分类
	
	这里补充一点:
		对于线性不可分的情况,我们的解决方法其实是多项式扩展

那么,接下来我们先来讨论二维空间中的线性可分问题

首先我们先用公式阐述我们的问题:

存在一条决策边界 f ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 = θ T X , f ( x ) 为距离 f(x)=\theta _{0} +\theta _{1}x_{1}+\theta _{2}x_{2} = \theta ^{T} X,f(x)为距离 f(x)=θ0+θ1x1+θ2x2=θTXf(x)为距离

其中,令 g ( x ) = 1 1 + e − x , g ( x ) 为概率 g(x) = \frac{1}{1+e^{-x} },g(x)为概率 g(x)=1+ex1g(x)为概率
则,会得到 h θ ( x ) = g ( f ( x ) ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 ) h_{\theta } (x) = g(f(x))= g(\theta _{0}+\theta _{1}x_{1}+\theta _{2}x_{2} ) hθ(x)=g(f(x))=g(θ0+θ1x1+θ2x2)
当确定 θ 0 , θ 1 , θ 2 \theta _{0},\theta _{1},\theta _{2} θ0θ1θ2后,就可以用 h θ ( x ) h_{\theta } (x) hθ(x)对新数据进行预测;需要注意的是,此时预测的是样本属于正样本的概率

结合上面对于问题的描述,我们开始对公式进行推导


假设我们采集到数据后,进行标注,得到数据集如下:

x 1 ( i ) , x 2 ( i ) , . . . , x N ( i ) , y ( i ) x_{1}^{(i)}, x_{2}^{(i)}, ... , x_{N}^{(i)}, y^{(i)} x1(i),x2(i),...,xN(i),y(i)
其中,数据集的正样本标注为 y ( i ) = 1 y^{(i)}=1 y(i)=1
其中,数据集的负样本标注为 y ( i ) = 0 y^{(i)}=0 y(i)=0

对于线性可分问题,存在决策边界为:
θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ N x N = 0 \theta _{0}+ \theta _{1}x_{1}+\theta _{2}x_{2}+ ... +\theta _{N}x_{N} = 0 θ0+θ1x1+θ2x2+...+θNxN=0

则,令
d = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ N x N ,这里的距离 d 有正负 d=\theta _{0}+ \theta _{1}x_{1}+\theta _{2}x_{2}+ ... +\theta _{N}x_{N},这里的距离d有正负 d=θ0+θ1x1+θ2x2+...+θNxN,这里的距离d有正负

如果带入每个样本的特征值,就会得到每个样本点到直线的距离,即:
d = θ 0 + θ 1 x 1 ( i ) + θ 2 x 2 ( i ) + . . . + θ N x N ( i ) d = \theta _{0}+ \theta _{1}x_{1}^{(i)}+\theta _{2}x_{2}^{(i)}+ ... +\theta _{N}x_{N}^{(i)} d=θ0+θ1x1(i)+θ2x2(i)+...+θNxN(i)
根据Logistic函数
y = 1 1 + e − x y = \frac{1}{1+e^{-x}} y=1+ex1
带入关于 θ \theta θ的函数d,我们可以得到
h θ ( x ) = 1 1 + e − d ( θ ) h_{\theta } (x) = \frac{1}{1+e^{-d(\theta )}} hθ(x)=1+ed(θ)1

注意:
此时计算的 h θ ( x ) h_{\theta } (x) hθ(x)结果是以正样本为依据,即

所计算的样本属于 正样本/正类 的概率

同理,我们就会得到计算样本属于 负样本/负类 的概率


{ P ( y = 1 ∣ x ; θ ) = h θ ( x ) P ( y = 0 ∣ x ; θ ) = 1 − h θ ( x ) \left\{\begin{matrix}P(y=1|x;\theta ) = h_{\theta }(x) \\P(y=0|x;\theta ) = 1-h_{\theta }(x) \end{matrix}\right. {P(y=1∣x;θ)=hθ(x)P(y=0∣x;θ)=1hθ(x)
合并后,我们会得到
P ( y ∣ x ; θ ) = h θ ( x ) y [ 1 − h θ ( x ) ] 1 − y P(y|x;\theta ) = h_{\theta }(x)^{y}\left [ 1-h_{\theta }(x) \right ]^{1-y} P(yx;θ)=hθ(x)y[1hθ(x)]1y
这样,我们就可以得到关于 θ \theta θ的似然函数:
L ( θ ) = ∏ i = 1 M h θ ( x ( i ) ) y ( i ) [ 1 − h θ ( x ( i ) ) ] 1 − y ( i ) L(\theta)=\prod_{i=1}^{M} h_{\theta }(x^{(i)} )^{y^{(i)} }\left [ 1-h_{\theta }(x^{(i)}) \right ]^{1-y^{(i)}} L(θ)=i=1Mhθ(x(i))y(i)[1hθ(x(i))]1y(i)

为了方便计算,我们对似然求对数,得到
l ( θ ) = l n [ L ( θ ) ] = ∑ i = 1 M { y ( i ) l n [ h θ ( x ( i ) ) ] + ( 1 − y ( i ) ) l n [ 1 − h θ ( x ( i ) ) ] } l(\theta )=ln\left [ L(\theta)\right ]=\sum_{i=1}^{M}\left \{y^{(i)}ln[h_{\theta}(x^{(i)} )]+(1-y^{(i)})ln[1-h_{\theta}(x^{(i)} )] \right \} l(θ)=ln[L(θ)]=i=1M{y(i)ln[hθ(x(i))]+(1y(i))ln[1hθ(x(i))]}
下面,就到了我们熟悉的环节,求 θ \theta θ偏导

∂ l ( θ ) ∂ ( θ j ) = ∑ i = 1 M ∂ { y ( i ) l n [ h θ ( x ( i ) ) ] + ( 1 − y ( i ) ) l n [ 1 − h θ ( x ( i ) ) ] } ∂ ( θ j ) \frac{\partial l(\theta )}{\partial (\theta _{j} )} =\sum_{i=1}^{M}\frac{\partial\left \{ y^{(i)}ln[h_{\theta}(x^{(i)} )]+(1-y^{(i)})ln[1-h_{\theta}(x^{(i)} )] \right \} }{\partial(\theta _{j})} (θj)l(θ)=i=1M(θj){y(i)ln[hθ(x(i))]+(1y(i))ln[1hθ(x(i))]}

      = ∑ i = 1 M ( y ( i ) h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ) ∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) =\sum_{i=1}^{M}( \frac{y^{(i)}}{h_{\theta}(x^{(i)})} -\frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})})\frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )} =i=1M(hθ(x(i))y(i)1hθ(x(i))1y(i))(θj)(hθ(x(i)))

这里我们来推导 ∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) \frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )} (θj)(hθ(x(i)))

其中, h θ ( x ) = 1 1 + e − d ( θ ) h_{\theta } (x) = \frac{1}{1+e^{-d(\theta )}} hθ(x)=1+ed(θ)1,又 y = 1 1 + e − x y = \frac{1}{1+e^{-x}} y=1+ex1

所以我们先对y进行求导

d y d x = [ − 1 ( 1 + e − x ) 2 ∗ e − x ∗ ( − 1 ) ] \frac{\mathrm{d} y}{\mathrm{d} x} =\left [ -\frac{1}{(1+e^{-x} )^{2}}\ast e^{-x}\ast (-1)\right ] dxdy=[(1+ex)21ex(1)]

     = 1 1 + e − x ∗ e − x 1 + e − x = \frac{1}{1+e^{-x}} \ast \frac{e^{-x}}{1+e^{-x}} =1+ex11+exex

     = 1 1 + e − x ∗ ( 1 − 1 1 + e − x ) =\frac{1}{1+e^{-x}} \ast (1-\frac{1}{1+e^{-x}}) =1+ex1(11+ex1)

     = y ∗ ( 1 − y ) =y \ast (1-y) =y(1y)

对于 ∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) \frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )} (θj)(hθ(x(i)))我们就会得到

∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) = h θ ( x ( i ) ) ∗ [ 1 − h θ ( x ( i ) ) ] ∗ ∂ d ( θ ) ∂ θ j \frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )}=h_{\theta}(x^{(i)})\ast \left [ 1-h_{\theta}(x^{(i)}) \right ] \ast \frac{\partial d(\theta )}{\partial \theta _{j} } (θj)(hθ(x(i)))=hθ(x(i))[1hθ(x(i))]θjd(θ)

∂ l ( θ ) ∂ θ j = ∑ i = 1 M ( y ( i ) h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ) ∂ ( h θ ( x ( i ) ) ) ∂ θ j \frac{\partial l(\theta )}{\partial \theta _{j} }=\sum_{i=1}^{M}( \frac{y^{(i)}}{h_{\theta}(x^{(i)})} -\frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})})\frac{\partial(h_{\theta}(x^{(i)})) }{\partial \theta _{j} } θjl(θ)=i=1M(hθ(x(i))y(i)1hθ(x(i))1y(i))θj(hθ(x(i)))

      = ∑ i = 1 M ( y ( i ) h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ) ∗ h θ ( x ( i ) ) ∗ [ 1 − h θ ( x ( i ) ) ] ∗ ∂ d ( θ ) ( i ) ∂ θ j =\sum_{i=1}^{M}( \frac{y^{(i)}}{h_{\theta}(x^{(i)})} -\frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})})\ast h_{\theta}(x^{(i)})\ast \left [ 1-h_{\theta}(x^{(i)}) \right ] \ast \frac{\partial d(\theta )^{(i)} }{\partial \theta _{j} } =i=1M(hθ(x(i))y(i)1hθ(x(i))1y(i))hθ(x(i))[1hθ(x(i))]θjd(θ)(i)
      = ∑ i = 1 M [ y ( i ) − h θ ( x ( i ) ) ] ∗ ∂ d ( θ ) ( i ) ∂ θ j =\sum_{i=1}^{M}[y^{(i)}-h_{\theta}(x^{(i)} ) ] \ast \frac{\partial d(\theta )^{(i)} }{\partial \theta _{j} } =i=1M[y(i)hθ(x(i))]θjd(θ)(i)

根据 d ( θ ) ( i ) = θ 0 x 0 ( i ) + θ 1 x 1 ( i ) + θ 2 x 2 ( i ) + . . . + θ N x N ( i ) d(\theta )^{(i)} = \theta _{0}x_{0}^{(i)}+ \theta _{1}x_{1}^{(i)}+\theta _{2}x_{2}^{(i)}+ ... +\theta _{N}x_{N}^{(i)} d(θ)(i)=θ0x0(i)+θ1x1(i)+θ2x2(i)+...+θNxN(i)
我们可以得到
∂ d ( θ ) ( i ) ∂ θ j = x j ( i ) \frac{\partial d(\theta )^{(i)} }{\partial \theta _{j} }=x_{j}^{(i)} θjd(θ)(i)=xj(i)

∂ l ( θ ) ∂ θ j = ∑ i = 1 M [ y ( i ) − h θ ( x ( i ) ) ] ∗ x j ( i ) \frac{\partial l(\theta )}{\partial \theta _{j} }=\sum_{i=1}^{M}[y^{(i)}-h_{\theta}(x^{(i)} ) ] \ast x_{j}^{(i)} θjl(θ)=i=1M[y(i)hθ(x(i))]xj(i)

为了求解似然函数的最大值,我们需要令导数等于0,即
∂ l ( θ ) ∂ θ j = 0 \frac{\partial l(\theta )}{\partial \theta _{j} }=0 θjl(θ)=0

这里继续向下推会发现,求解偏导为0的计算十分困难

由此,我们会想到用梯度下降优化模型参数,那么,具体怎么优化,我们下一篇再见啦!


感谢阅读🌼
如果喜欢这篇文章,记得点赞👍和转发🔄哦!
有任何想法或问题,欢迎留言交流💬,我们下次见!

祝愉快🌟!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/421104.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于python+django的求职招聘管理系统源码+开发文档

该系统是基于pythondjango的求职招聘网站、网上招聘管理系统、网上人才招聘系统、毕业生求职招聘系统、大学生求职招聘系统、校园招聘系统、企业招聘系统。写了2周&#xff0c;给师弟的课程作业。 源码地址 https://github.com/geeeeeeeek/python_job 功能介绍 平台采用B/S结…

2.25_模式识别大作业的三种方法

filename sys.argv[1] df pd.read_csv(filename,index_col["ID"]) ax df.plot() ax.set_xlabel("Data_ID") ax.set_ylabel("load_value") plt.show() 这段代码是用来读取一个CSV文件&#xff0c;并将文件中的数据绘制成一个简单的折线图。 在…

202435读书笔记|《半小时漫画中国史》——读点经济学与历史,生活更美好,趣味烧脑土地制度、商鞅变法、华丽丽的丝绸之路这里都有

202435读书笔记|《半小时漫画中国史》——读点经济学与历史&#xff0c;生活更美好&#xff0c;趣味烧脑土地制度、商鞅变法、华丽丽的丝绸之路这里都有 1. 土地政策、度量衡及税收2. 商鞅变法3. 西汉经济4. 西汉盐铁大辩论5. 西汉丝绸之路 《半小时漫画中国史&#xff1a;经济…

bert 相似度任务训练,简单版本

目录 任务 代码 train.py predit.py 数据 任务 使用 bert-base-chinese 训练相似度任务&#xff0c;参考&#xff1a;微调BERT模型实现相似性判断 - 知乎 参考他上面代码&#xff0c;他使用的是 BertForNextSentencePrediction 模型&#xff0c;BertForNextSentencePred…

一文讲透:可视化大屏中3D元素的融入和使用方法

在可视化大屏中&#xff0c;3D元素融入的越来越多&#xff0c;贝格前端工场经常接到这类项目&#xff0c;很多老铁认为加个3D效果很easy&#xff0c;其实不然&#xff0c;工序非常复杂&#xff0c;总结如下。 一、什么是3D技术 三维展示&#xff08;3D展示&#xff09;是指使用…

gpt生成器,批量gpt文章生成器

GPT&#xff08;生成式预训练模型&#xff09;生成器软件在当今的数字化时代扮演着越来越重要的角色&#xff0c;它们通过人工智能技术&#xff0c;可以自动生成各种类型的文章内容&#xff0c;为用户提供了无限的创作可能性。本文将介绍6款不同的GPT生成器软件&#xff0c;并介…

退休教师40年教龄补贴多少钱

那些默默奉献了四十年的老教师&#xff0c;他们退休后能得到多少补贴&#xff1f;今天&#xff0c;就让我们一起揭开这层面纱&#xff0c;看看教师退休金背后的故事。 教师这份职业&#xff0c;不仅仅是传授知识那么简单。它更代表着一种责任&#xff0c;一种对下一代无尽的关爱…

什么是微前端

微前端是一种web应用构建方式。 微前端在2016年ThoughtWorks Technology Radar正式被提出。微服务这个被广泛应用于服务端的技术范式扩展到前端领域。现代的前端应用的发展趋势正在变得越来越富功能化&#xff0c;富交互化&#xff0c;也就是SPA应用&#xff1b;这样越来越复杂…

word文档空格不能有下划线【笔记】

word文档空格不能有下划线 2024-3-1 21:20:24 推荐 word下划线打不出来了&#xff0c;是怎么回事&#xff1f; 问题 字后面打不出来下划线 操作 1.点击文件 左上角&#xff0c;点击“文件”。 2.点击选项 鼠标下滑&#xff0c;点击“选项”。 3.点击常规与保存 点击“…

CY8C42(未知.UDB模块使用)

开发UDB模块要用到verilog了 虽然官方给出了图形配置&#xff0c;但是完全看不懂。 没办法&#xff0c;我先去学FPGA了&#xff0c;去买矿卡了。 后面等学一点FPGA再来更新吧&#xff0c;可能PSOC里面有些内容会随机更新吧。 官方给了一份文档&#xff0c;链接在这&#xff0…

使用el-form之表单校验自动定位到报错位置问题,,提升用户体验

需求描述 由于需要填写的表单项太多&#xff0c;提交的时候校验不通过&#xff0c; 如果没填写的表单项在最上面&#xff0c;用户看不到不知道发生了啥&#xff0c; 所以需要将页面滚动定位到第一个报错的表单项位置&#xff0c;提升用户体验实现步骤 1. 给form表单添加ref …

智慧楼宇的心脏:E6000物联网主机

智慧楼宇是指通过全面覆盖的感知设备和互联网技术&#xff0c;为建筑提供高效、舒适、安全、环保、可持续的智能化服务。 在科技快速发展的今天&#xff0c;智慧楼宇已经不再是遥不可及的梦想。而在这个梦想成真的过程中&#xff0c;物联网主机扮演着至关重要的角色。它如同智慧…

加密与安全_深入了解Hmac算法(消息认证码)

文章目录 PreHMAC概述常见的Hmac算法Code随机的key的生成 KeyGeneratorHmacMD5用Hmac算法取代原有的自定义的加盐算法 HmacMD5 VS MD5HmacSHA256 Pre 加密与安全_深入了解哈希算法中我们提到&#xff0c; 存储用户的哈希口令时&#xff0c;要加盐存储&#xff0c;目的就在于抵…

手写数字识别(慕课MOOC人工智能之模式识别)

问题&#xff1a;手写数字识别 数据集 数据集链接请点击我 代码 %mat2vector.m function [data_] mat2vector(data,num)[row,col,~] size(data);data_zeros(num,row*col);for page 1:numfor rows 1:rowfor cols1:coldata_(page,((rows-1)*colcols)) im2double(data(rows,cols…

机器人与AGI会撞出什么火花?

真正的科技变革是不是就要来临了&#xff1f;各方大佬都开始布局机器人&#xff0c;对于普通人的就业会造成什么影响&#xff1f; ​ 优牛企讯-企业动态信息监控专家 在优牛企讯-企业动态监控专家搜索可知&#xff0c;全国目前的机器人公司已经达到了26401家&#xff0c;近一年…

浅谈 Linux 孤儿进程和僵尸进程

文章目录 前言孤儿进程僵尸进程 前言 本文介绍 Linux 中的 孤儿进程 和 僵尸进程。 孤儿进程 在 Linux 中&#xff0c;就是父进程已经结束了&#xff0c;但是子进程还在运行&#xff0c;这个子进程就被称作 孤儿进程。 需要注意两点&#xff1a; 孤儿进程最终会进入孤儿院…

实战打靶集锦-026-Gaara

文章目录 1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查5. 突破边界6. 提权6.1 枚举系统信息6.2 查看passwd文件6.3 查看定时任务6.4 查看可执行文件6.5 查看家目录6.6 Linpeas提权 7. 获取flag写在最后 靶机地址&#xff1a;https://download.vulnhub.com/gaara/Gaara.ova 1…

第六节:Vben Admin权限-后端控制方式

系列文章目录 第一节:Vben Admin介绍和初次运行 第二节:Vben Admin 登录逻辑梳理和对接后端准备 第三节:Vben Admin登录对接后端login接口 第四节:Vben Admin登录对接后端getUserInfo接口 第五节:Vben Admin权限-前端控制方式 文章目录 系列文章目录前言一、角色权限(后端…

7. 构建简单 IPv6 网络

7.1 实验介绍 7.1.1 关于本实验 IPv6&#xff08;Internet Protocol Version 6&#xff09;也被称为IPng&#xff08;IP Next Generation&#xff09;。它是Internet工程任务组IETF&#xff08;Internet Engineering Task Force&#xff09;设计的一套规范&#xff0c;是IPv4…

python水表识别图像识别深度学习 CNN

python水表识别&#xff0c;图像识别深度学习 CNN&#xff0c;Opencv,Keras 重点&#xff1a;项目和文档是本人近期原创所作&#xff01;程序可以将水表图片里面的数据进行深度学习&#xff0c;提取相关信息训练&#xff0c;lw1.3万字重复15%&#xff0c;可以直接上交那种&…