LaMa Image Inpainting 图像修复 Onnx Demo

目录

介绍

效果 

模型信息

项目

代码

下载


LaMa Image Inpainting 图像修复 Onnx Demo

介绍

gihub地址:https://github.com/advimman/lama

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

效果 

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:image
tensor:Float[1, 3, 1000, 1504]
name:mask
tensor:Float[1, 1, 1000, 1504]
---------------------------------------------------------------

Outputs
-------------------------
name:inpainted
tensor:Float[1, 1000, 1504, 3]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string image_path_mask = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat image_mask;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> input_tensor_mask;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;

        StringBuilder sb = new StringBuilder();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image = new Mat(image_path);
            int w = image.Width;
            int h = image.Height;
            image_mask = new Mat(image_path_mask);

            Common.Preprocess(image, image_mask, input_tensor, input_tensor_mask);

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));

            //将 input_tensor_mask 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("mask", input_tensor_mask));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            Mat result = Common.Postprocess(result_infer);

            Cv2.Resize(result, result, new OpenCvSharp.Size(w, h));

            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");

            pictureBox2.Image = new Bitmap(result.ToMemoryStream());
            textBox1.Text = sb.ToString();

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/big_lama_regular_inpaint.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 1000, 1504 });

            input_tensor_mask = new DenseTensor<float>(new[] { 1, 1, 1000, 1504 });

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            image_path_mask = "test_img/mask.jpg";
            pictureBox3.Image = new Bitmap(image_path_mask);
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string image_path_mask = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat image_mask;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> input_tensor_mask;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;

        StringBuilder sb = new StringBuilder();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image = new Mat(image_path);
            int w = image.Width;
            int h = image.Height;
            image_mask = new Mat(image_path_mask);

            Common.Preprocess(image, image_mask, input_tensor, input_tensor_mask);

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));

            //将 input_tensor_mask 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("mask", input_tensor_mask));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            Mat result = Common.Postprocess(result_infer);

            Cv2.Resize(result, result, new OpenCvSharp.Size(w, h));

            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");

            pictureBox2.Image = new Bitmap(result.ToMemoryStream());
            textBox1.Text = sb.ToString();

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/big_lama_regular_inpaint.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 1000, 1504 });

            input_tensor_mask = new DenseTensor<float>(new[] { 1, 1, 1000, 1504 });

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            image_path_mask = "test_img/mask.jpg";
            pictureBox3.Image = new Bitmap(image_path_mask);
        }
    }
}

Common.cs

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Onnx_Demo
{
    internal class Common
    {
        public static void Preprocess(Mat image, Mat image_mask,  Tensor<float> input_tensor, Tensor<float> input_tensor_mask)
        {
            Cv2.Resize(image, image, new OpenCvSharp.Size(1504, 1000));
            // 输入Tensor
            for (int y = 0; y < image.Height; y++)
            {
                for (int x = 0; x < image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = image.At<Vec3b>(y, x)[0] / 255.0f;
                    input_tensor[0, 1, y, x] = image.At<Vec3b>(y, x)[1] / 255.0f;
                    input_tensor[0, 2, y, x] = image.At<Vec3b>(y, x)[2] / 255.0f;
                }
            }

            Cv2.Resize(image_mask, image_mask, new OpenCvSharp.Size(1504, 1000));
            //膨胀核函数
            Mat element1 = new Mat();
            OpenCvSharp.Size size1 = new OpenCvSharp.Size(11, 11);
            element1 = Cv2.GetStructuringElement(MorphShapes.Rect, size1);

            //膨胀一次,让轮廓突出
            Mat dilation = new Mat();
            Cv2.Dilate(image_mask, image_mask, element1);

            //输入Tensor
            for (int y = 0; y < image_mask.Height; y++)
            {
                for (int x = 0; x < image_mask.Width; x++)
                {
                    float v = image_mask.At<Vec3b>(y, x)[0];
                    if (v > 127)
                    {
                        input_tensor_mask[0, 0, y, x] = 1.0f;
                    }
                    else
                    {
                        input_tensor_mask[0, 0, y, x] = 0.0f;
                    }
                }
            }

        }

        public static Mat Postprocess(IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer)
        {
            // 将输出结果转为DisposableNamedOnnxValue数组
            DisposableNamedOnnxValue[] results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            Tensor<float> result_tensors = results_onnxvalue[0].AsTensor<float>();

            float[] result_array = result_tensors.ToArray();

            for (int i = 0; i < result_array.Length; i++)
            {
                result_array[i] = Math.Max(0, Math.Min(255, result_array[i]));
            }

            Mat result = new Mat(1000, 1504, MatType.CV_32FC3, result_array);

            return result;
        }
    }
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/420133.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电脑休眠之后唤不醒

现象&#xff1a;午休时间电脑休眠了&#xff0c;醒来之后发现在密码输入界面&#xff0c;但鼠标键盘没反应。按重启键或电源机重新开机&#xff0c;结果开不了机。 原因&#xff1a;1、内存条脏了&#xff0c;导致内存条读取失败 2、休眠的时候硬盘休眠了&#xff0c;导致按…

7、Redis-事务、持久化、内存淘汰机制和过期key处理

目录 一、事务 二、持久化 三、内存淘汰机制 四、过期key处理 一、事务 Redis的事务本质上就是一个批量执行命令的操作。分为三个步骤&#xff1a; 开始事务&#xff1a;multi命令入队&#xff1a;正常输入命令即可执行事务&#xff08;依次执行命令&#xff09;&#xf…

linux_day04

大纲&#xff1a;命令&#xff0c;vim&#xff0c;gcc&#xff0c;编译工具&#xff0c;生成代码&#xff0c;调试&#xff0c;库makefile&#xff0c;系统编程 文件系统&#xff1a;文件属性&#xff0c;文件内容&#xff0c;万物皆文件&#xff08;不在内存中的是文件&#…

为什么说?上位机开发有广泛的前景

上位机开发展现了广泛的前景&#xff0c;主要有以下几个方面的原因&#xff1a; 广泛应用的C#语言&#xff1a; C#在软件开发领域得到了广泛应用&#xff0c;拥有丰富的库、工具和社区支持&#xff0c;使得学习和使用C#进行上位机开发更加便捷。与Windows密切相关&#xff1a; …

LeetCode -- 79.单词搜索

1. 问题描述 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 单词必须按照字母顺序&#xff0c;通过相邻的单元格内的字母构成&#xff0c;其中“相邻”单元格是那些水…

用 Pytest+Allure 生成漂亮的 HTML 图形化测试报告

本篇文章将介绍如何使用开源的测试报告生成框架 Allure 生成规范、格式统一、美观的测试报告。 通过这篇文章的介绍&#xff0c;你将能够&#xff1a; 将 Allure 与 Pytest 测试框架相结合&#xff1b;如何定制化测试报告内容执行测试之后&#xff0c;生成 Allure 格式的测试报…

10.广域网技术

1. PPP实验点这里&#xff08;拓扑代码&#xff09; 2. PPPoE配置实验点这里&#xff08;拓扑代码&#xff09; 目录 一、广域网二、PPP协议三、PPP链路建立过程1-LCP&#xff08;链路协商&#xff09;四、PPP链路建立过程2-PAP/CHAP&#xff08;认证协商&#xff0c;可选&…

微服务间通信重构与服务治理笔记

父工程 依赖版本管理,但实际不引入依赖 pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation&…

详解字符串函数<string.h>(上)

1. strlen函数的使用和模拟实现 size_t strlen(const char* str); 1.1 函数功能以及用法 字符串长度 strlen函数的功能是计算字符串的长度。在使用时&#xff0c;要求用户传入需要计算长度的字符串的起始位置&#xff0c;并返回字符串的长度。 #include <stdio.h> #…

【两万字面试系列】三年前的面试题。Service里面的线程安全问题

前言 三年前&#xff0c;大概是21年&#xff0c;那会刚学完java&#xff0c;然后去面试&#xff0c;被打的一塌糊涂&#xff0c;今天来盘一盘之前的面试&#xff0c;到底是怎样的问题整住了。然后发现了去年整的线程安全东西&#xff0c;也贴到文章后面了。那个贴的还不太准&a…

2024腾讯云服务器优惠价格表又降价了,给同行干emo了

腾讯云优惠活动2024新春采购节活动上线&#xff0c;云服务器价格已经出来了&#xff0c;云服务器61元一年起&#xff0c;配置和价格基本上和上个月没什么变化&#xff0c;但是新增了8888元代金券和会员续费优惠&#xff0c;腾讯云百科txybk.com整理腾讯云最新优惠活动云服务器配…

探索数据结构:解锁计算世界的密码

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;数据结构与算法 贝蒂的主页&#xff1a;Betty‘s blog 前言 随着应用程序变得越来越复杂和数据越来越丰富&#xff0c;几百万、…

每日五道java面试题之spring篇(九)

目录&#xff1a; 第一题. 说一下Spring的事务传播行为第二题. 说一下 spring 的事务隔离&#xff1f;第三题. Spring AOP and AspectJ AOP 有什么区别&#xff1f;AOP 有哪些实现方式&#xff1f;第四题. JDK动态代理和CGLIB动态代理的区别第五题. 解释一下Spring AOP里面的几…

基于SSM医院电子病历管理系统的设计与实现(源代码+数据库脚本+万字文档+PPT)

系统介绍 医院电子病历管理系统主要是借助计算机&#xff0c;通过对医院电子病历管理系统所需的信息管理&#xff0c;增加用户的选择&#xff0c;同时也方便对广大用户信息的及时查询、修改以及对用户信息的及时了解。医院电子病历管理系统 对用户带来了更多的便利&#xff0c…

1、jQuery介绍、css()、选择器、事件、动画

一、jQuery介绍&#xff1f; 1、什么是jQuery&#xff1f; 是一个JavaScript函数库 2、jQuery特点 写的少&#xff0c;做的多 3、jQuery的安装 直接下载引入 <script src"jquery-1.10.2.min.js"></script>通过cdn引入 <script src"https…

VScode 单步断点调试Nodejs方法总结

目录 方法一 方法二 方法三 方法一 使用vscode开发nodejs程序,能够启动单步调试模式,在指定代码处添加断点,像chrome、firefox浏览器上一样进行JavaScript的调试。 新建一个nodejs的工程,编写代码后,配置代码调试的步骤: 1、切换到代码调试界面 2、界面提示,新建一…

Python列表中添加删除元素不走弯路

1.append() 向列表中添加单个元素&#xff0c;一般用于尾部追加 list1 ["香妃", "乾隆", "贾南风", "赵飞燕", "汉武帝"]list1.append("周瑜") print(list1) # [香妃, 乾隆, 贾南风, 赵飞燕, 汉武帝, 周瑜]…

私域必备宝藏工具:多微信统一管理聚合聊天

对于私域流量运营者来说&#xff0c;如何高效管理多个微信号成为了一道难题。 不过不用担心&#xff0c;通过微信管理系统&#xff0c;可以实现多个微信同时登录&#xff0c;同一个界面内聚合聊天&#xff0c;省去来回切换账号的步骤。而且&#xff0c;还有很多非常实用且便捷…

幻兽帕鲁/Palworld服务器的最佳网络设置、内存和CPU配置是什么?

幻兽帕鲁/Palworld服务器的最佳网络设置、内存和CPU配置是什么&#xff1f; 对于4到8人的玩家&#xff0c;推荐的配置是4核16G的CPU和16G的内存。10到20人的玩家选择8核32G的CPU和32G或以上的内存。2到4人的玩家则建议选择4核8G的CPU和8G的内存。对于32人的玩家&#xff0c;推…

java常用环境docker安装

配置目录 rocketmqredismysql不配置binlog配置binlog Nacoszookeeper 本文为精简安装&#xff0c;部分不带容器卷映射&#xff0c;仅供以学习使用。 rocketmq nameservice sudo docker run -d \ --privilegedtrue \ --name rmqnamesrv \ -p 9876:9876 \ -e "MAX_HEAP_SI…