LangChain---大型语言模型(LLM)的标准接口和编程框架

1.背景说明

        公司在新的一年规划中突然提出要搞生成式AI(GenAI)的相关东西,在公司分享的参考资料中了解到了一些相关的信息,之所以想到使用LangChain,是因为在应用中遇到了瓶颈问题,除了已经了解和研究过的OpenAI的ChatGpt,基本再没有别的生成AI的相关应用落地。一方面,gpt的目前使用仅限于通过接口秘钥去调用将结果返回到页面上,而公司希望能够通过代码接口的方式传入数据调用不同的开源大语言模型,然后实时返回解析结果。另一方面,OpenAI的所有预训练模型及使用都是收费的,尽管每个token的收费为$0.002~$0.005,但如果输入和输出的内容较多,特别在调试阶段,需要反复测试不同情况下系统的响应,这样积累下来的花费是非常大的。因此决定尝试使用其它的LLM模型代替OpenAI模型,例如Meta于2月份推出的LLaMa模型以及Google的flan-t5-xxl模型。而不管要使用别的任意开源模型,都需要依赖一个访问接口才可以。

2.LangChain

        介绍

        LangChain是一个围绕大型语言模型(Large Language Models, LLMs)建立的开源框架。LangChain不是LLM的提供者,而是提供了一个标准接口,它简化了提示(prompt)管理和优化,通过这个接口,用户可以与各种LLM进行交互,并包括与LLM一起工作的通用工具。LangChain为链(chains)提供了一个标准接口,使开发者能够创建超越单一LLM调用的调用序列。此外,它能够对长篇文字进行总结和对特定数据源的提问进行回答。

        特性

        大型语言模型 (LLMs) 是一种日益变革的技术,使开发者能够建立以前无法想象的应用程序。然而,孤立地使用LLM往往不足以创建真正强大的应用程序,LLMs的真正力量在于它们与其他计算或知识来源的整合。Langchain是一个尖端的开源Python库,专门提供先进的LLM链、代理、工具和索引,它以创新的面向对象的方式创建提示 (prompts),并将工具的输出链化。LangChain和Llama-index正试图准确地解决这些挑战。LangChain为开发者提供了以下功能,其复杂程度依次递增:

(1) LLMs and Prompts

(2) Chains

(3) Data Augmented Generation

(4) Agents

(5) Memory

(6) Evaluation

LangChain的其他一些特点包括它对数据增强生成、代理、内存和评估的支持。它为链提供了一个标准的接口,并与其他工具进行了大量的整合。LangChain还提供了一个标准的代理(agents)接口,提供了一些可供选择的代理,以及端到端的代理实例。这些代理可用于更接地气的问题回答、与API的互动,甚至采取行动。在LangChain中,代理是使用语言模型与其他工具互动的系统。这些代理可以用来为下一代个人助理提供动力--这些系统可以智能地理解用户的意思,然后采取行动来帮助完成目标。内存是LangChain的另一个特点,它允许在链或代理的调用之间持久保存状态。

3 测试

        为了取代OpenAI,首先想到的是HuggingFace库中的模型,在GPT-2时代,我们一直使用该库中的模型,本公众号在2021年写了大量这方面的文章,下面是一个简单应用例子,在这个例子中,共使用了3个类:PromptTemplate用来创建创建提示行的格式prompt,HuggingFaceHub用来建立预训练模型hub_llm,LLMChain用来产生模型链llm_chain。在本例中,使用了google/flan-t5-xxl模型,该模型是在T5【生成摘要(Summarization)的新方法】的基础上发展而来的。

from langchain import PromptTemplate, HuggingFaceHub, LLMChaintemplate = """Question: {question}Answer: Let's think step by step."""prompt = PromptTemplate(template=template, input_variables = ["question"])hub_llm = HuggingFaceHub(        repo_id = model_id,    model_kwargs={"temperature":1, "max_length":364})llm_chain = LLMChain(prompt=prompt, llm=hub_llm)question = "What is mining engineering?"print(llm_chain.run(question))

问题:What is mining engineering?

回答:Mining engineering is the engineering discipline that applies science and technology to the extraction of minerals from the earth.(采矿工程是将科学和技术应用于从地球上提取矿物的工程学科) [first.py]

4 结束语

        本文讨论了LangChain的使用,LangChain是一个围绕大型语言模型(LLM)建立的开源框架,是为了解决成本问题预先训练好的模型。LangChain简化了提示管理和优化,允许用户与各种LLM互动,并创建调用链以超越单一的LLM。该框架还支持数据生成文章。提供了一个使用LangChain的例子,用HuggingFace库中的模型作为预训练模型,用LLMChain生成一个模型链。这个例子的应用成功地回答了"什么是采矿工程"的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/419128.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

分层解耦-三层架构(未完)

controller层——》service——》dao——》service——》controller 控制反转 依赖注入

阿里巴巴找黄金宝箱(I)【华为OD机试-JAVAPythonC++JS】

题目描述 一贫如洗的樵夫阿里巴巴在去砍柴的路上,无意中发现了强盗集团的藏宝地,藏宝地有编号从0~N的箱子,每个箱子上面贴有一个数字,箱子中可能有一个黄金宝箱。 黄金宝箱满足排在它之前的所有箱子数字和等于排在它之后的所有箱子…

Android 性能优化--APK加固(1)混淆

文章目录 为什么要开启混淆如何开启代码混淆如何开启资源压缩代码混淆配置代码混淆后,Crash 问题定位结尾 本文首发地址:https://h89.cn/archives/211.html 最新更新地址:https://gitee.com/chenjim/chenjimblog 为什么要开启混淆 先上一个 …

“智农”-高标准农田

高标准农田是指通过土地整治、土壤改良、水利设施、农电配套、机械化作业等措施,提升农田质量和生产能力,达到田块平整、集中连片、设施完善、节水高效、宜机作业、土壤肥沃、生态友好、抗灾能力强、与现代农业生产和经营方式相适应的旱涝保收、稳产高产…

BUUCTF---wireshark1

1.题目描述 2.下载附件是一个.pcap的文件 3.需要用到wireshark工具,用该工具打开文件 4.用户在登录密码时一般不会用get方式提交,因为这样不安全,相比较而言post安全一点。 5.使用http.request.methodPOST命令进行过滤,得到一条流…

道路千万条,安全第一条,如何让机器人更安全?

停的住,停的稳,该避就避,该停就停。 商用机器人实现落地的前提有很多,但安全问题毫无疑问是重中之重。尤其随着机器人的应用场景开始向复杂化、小型化方向拓展,对机器人的安全能力要求更是与日俱增。如何保证机器人在…

供水管网水力模型的建立与应用

阐述管网水力模型构建流程,建立供水管网水力模型。通过数据录入生成管网基本拓扑结构及物理信息,在模型简化之后利用监测数据进行模型校核,保障管网模型满足精度要求。利用管网模型进行管网工况分析,掌握管网内压力分布与管道流速分布状态,提出管网运行薄弱环节。 给…

测试环境搭建整套大数据系统(七:集群搭建kafka(2.13)+flink(1.13.6)+dinky(0.6)+iceberg)

一:搭建kafka。 1. 三台机器执行以下命令。 cd /opt wget wget https://dlcdn.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz tar zxvf kafka_2.13-3.6.1.tgz cd kafka_2.13-3.6.1/config vim server.properties修改以下俩内容 1.三台机器分别给予各自的broker_id…

C++设计模式之——享元模式详解和代码案例

文章目录 C中实现享元模式通常涉及以下几个关键部分:一个简单的C代码片段示例享元模式的进一步说明C享元模式代码案例——咖啡店订单系统享元模式在现实世界的应用场景 C中实现享元模式通常涉及以下几个关键部分: 享元模式(Flyweight Patter…

【Java设计模式】二、单例模式

文章目录 0、单例模式1、饿汉式2、懒汉式3、双重检查4、静态内部类5、枚举6、单例模式的破坏:序列化和反序列化7、单例模式的破坏:反射8、单例模式的实际应用 设计模式即总结出来的一些最佳实现。GoF(四人组) 书中提到23种设计模式,可分为三大…

linux c++ 开发 tensorrt 安装

tensorrt 官方下载地址(需要注册账号登录):Log in | NVIDIA Developer 根据系统发行版和CUDA版本 (nvcc -V) 选择合适的安装包 EA(early access)版本代表抢先体验。 GA(general availability)代…

文件对比工具Beyond Compare 4 mac v4.4.7(28397)中文版

Beyond Compare是一款适用于Windows、Mac OS X和Linux平台的文件和文件夹比较工具。它可以帮助用户比较和同步文件夹、文件和压缩包等内容,支持多种文件格式,如文本、图像、音频、视频等。 软件下载:Beyond Compare 4 mac v4.4.7(28397)中文版…

如何在Node.js中使用定时器

在Node.js中使用定时器是一项常见且重要的任务,特别是在需要执行定时任务或者轮询操作的情况下。Node.js提供了多种方式来实现定时器功能,包括setTimeout、setInterval和setImmediate等方法。本篇博客将介绍如何在Node.js中使用这些定时器,并…

WPF真入门教程30--顺风物流单据管理系统

1、教程回顾 到现在为止,真入门系列教程已完成了29刺由浅入深地讲解,当然不可能讲到了WPF的所有技能点,但读者看到了wpf的内部各种功能及之间的联系,在此基础上,提供一个完整有效的综合项目,本项目采用的是…

期货开户保证金保障市场正常运转

期货保证金是什么?在期货市场上,采取保证金交易制度,投资者只需按期货合约的价值,交一定比率少量资金即可参与期货合约买卖交易,这种资金就是期货保证金。期货保证金(以下简称保证金〕按性质与作用的不同。…

AGV搬运机器人能给企业带来哪些效益?

agv 当前物流行业正在以每年40%的速度快速增长,却依然是典型的劳动密集型行业。随着机器人技术的崛起,传统物流行业也开始加大对物流科技设备的研发。AGV机器人被广泛应用于整个仓储系统内,疏解了一部分人力的负担,使后台工作更加…

使用Azure下载数据集方法

首先需要获取到下载的链接,例如: https://aimistanforddatasets01.blob.core.windows.net/cocacoronarycalciumandchestcts-2?sv2019-02-02&src&sigHvhvAtJ7KRr1uIZkjkANqozGvOsqlamMDOKcQegYLrw%3D&st2024-02-29T11%3A55%3A45Z&se2024…

水豚鼠标助手 强大的鼠标美化工具

水豚鼠标助手 水豚鼠标助手是一款 鼠标换肤、屏幕画笔、放大镜、聚光灯、屏幕放大、倒计时功能的强大屏幕演示工具。 软件助手获取 水豚鼠标助手1.0.0 安装教程 第一步:下载后,双击软件安装包 第二步:Windows可能会出现提示弹窗&#xff…

Mac 制作可引导安装器

Mac 使用U盘或移动固态硬盘制作可引导安装器(以 Monterey 为例) 本教程参考 Apple 官网相关教程 创建可引导 Mac OS 安装器 重新安装 Mac OS 相关名词解释 磁盘分区会将其划分为多个单独的部分,称为分区。分区也称为容器,不同容器…

Docker(运维工具)—— 学习笔记

快速构建、运行、管理应用的工具 一、安装docker 参考Install Docker Engine on Ubuntu | Docker Docs 二、快速入门 1、镜像和容器 docker镜像可以做到忽略操作系统的差异,跨平台运行,忽略安装的差异 当我们利用Docker安装应用时,Dock…