【飞桨EasyDL】飞桨EasyDL发布的模型转换onnx(附工程代码)

一个愿意伫立在巨人肩膀上的农民......

 一、paddle转onnx转rknn环境搭建

        paddle转onnx和onnx转rknn两个环境可以分开搭建,也可以搭建在一起。这里选择分开搭建,先搭建paddle转onnx。

1.1、创建环境

        选择python3.8.13包进行创建环境

conda create --name paddle2rknn libprotobuf python==3.10

1.2、进入环境

        命令如下:

conda activate paddle2rknn

1.3、RKNN-Toolkit2工具安装

        RKNN-Toolkit2是为用户提供在 PC、Rockchip NPU 平台上进行模型转换、推理和性能评估的开发套件,RKNN-Toolkit2适用于RK3566、RK3568、RK3588/RK3588S、RV1103、RV1106等型号的芯片。RKNN-Toolkit2的适配文件可以从下方链接获取:

https://download.csdn.net/download/weixin_41809117/88879019?spm=1001.2014.3001.5503icon-default.png?t=N7T8https://download.csdn.net/download/weixin_41809117/88879019?spm=1001.2014.3001.5503

        下载解压后这里RKNN-Toolkit2的根目录为./rknn-toolkit2/packages/。目前提供两种方式安装RKNN-Toolkit2:一是通过Python包安装与管理工具pip进行安装;二是运行带完整RKNN-Toolkit2工具包的docker镜像。本文采用第一种方式。

        切换到RKNN-Toolkit2根目录:

cd /home/ub/下载/rknn-toolkit2/rknn-toolkit2/packages/

        安装依赖,因为我们环境的python版本是3.10.0,所以这里执行:

pip install -r requirements_cp310-1.6.0.txt

        安装RKNN-Toolkit2:

pip install rknn_toolkit2-1.6.0+81f21f4d-cp310-cp310-linux_x86_64.whl

1.4、paddle2onnx工具安装

        查看paddle2onnx可安装版本:

pip index versions paddle2onnx

        默认安装的就是最新版本,这里指定1.0.8版本,否则会因为onnx版本版本太高,与RKNN-Toolkit2不兼容:

pip install paddle2onnx==1.0.8

1.5、解决相关依赖问题

        到此,paddle转onnx转rknn环境基本搭建完成,但是还要解决一下包依赖的问题。

        安装pip依赖查看工具:

pip install pipdeptree

        查看依赖关系:

pipdeptree -p paddle2onnx

        根据终端打印的内容进行包的安装和版本更换。

pip install /*包名*/==/*版本号*/

二、模型转换

        Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括 TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。Paddle2ONNX包可通过如下连接下载:

https://download.csdn.net/download/weixin_41809117/88879464?spm=1001.2014.3001.5503icon-default.png?t=N7T8https://download.csdn.net/download/weixin_41809117/88879464?spm=1001.2014.3001.5503

2.1、获取PaddlePaddle部署模型

        Paddle2ONNX 在导出模型时,需要传入部署模型格式,包括两个文件

        a).model_name.pdmodel: 表示模型结构

        b).model_name.pdiparams: 表示模型参数 [注意] 这里需要注意,两个文件其中参数文件后辍为 .pdiparams,如你的参数文件后辍是 .pdparams,那说明你的参数是训练过程中保存的,当前还不是部署模型格式。 部署模型的导出可以参照各个模型套件的导出模型文档。

2.2、命令行模型转换

        指令paddle2onnx相关参数如下表:

参数参数说明
--model_dir配置包含 Paddle 模型的目录路径
--model_filename[可选] 配置位于 --model_dir 下存储网络结构的文件名
--params_filename[可选] 配置位于 --model_dir 下存储模型参数的文件名称
--save_file指定转换后的模型保存目录路径
--opset_version[可选] 配置转换为 ONNX 的 OpSet 版本,目前支持 7~16 等多个版本,默认为 9
--enable_dev_version[可选] 是否使用新版本 Paddle2ONNX(推荐使用),默认为 True
--enable_onnx_checker[可选] 配置是否检查导出为 ONNX 模型的正确性, 建议打开此开关, 默认为 False
--enable_auto_update_opset[可选] 是否开启 opset version 自动升级功能,当低版本 opset 无法转换时,自动选择更高版本的 opset进行转换, 默认为 True
--deploy_backend[可选] 量化模型部署的推理引擎,支持 onnxruntime、tensorrt 或 others,当选择 others 时,所有的量化信息存储于 max_range.txt 文件中,默认为 onnxruntime
--save_calibration_file[可选] TensorRT 8.X版本部署量化模型需要读取的 cache 文件的保存路径,默认为 calibration.cache
--version[可选] 查看 paddle2onnx 版本
--external_filename[可选] 当导出的 ONNX 模型大于 2G 时,需要设置 external data 的存储路径,推荐设置为:external_data
--export_fp16_model[可选] 是否将导出的 ONNX 的模型转换为 FP16 格式,并用 ONNXRuntime-GPU 加速推理,默认为 False
--custom_ops

[可选] 将 Paddle OP 导出为 ONNX 的 Custom OP。

例如:--custom_ops '{"paddle_op":"onnx_op"},默认为 {}

        模型转换指令:

paddle2onnx --model_dir models --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file saveonnx/model.onnx --enable_onnx_checker True

        转换结果在./Paddle2ONNX/saveonnx/model.onnx

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/417101.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

事物管理(黑马学习笔记)

事物回顾 在数据库阶段我们已学习过事务了,我们讲到: 事物是一组操作的集合,它是一个不可分割的工作单位。事务会把所有的操作作为一个整体,一起向数据库提交或者是撤销操作请求。所以这组操作要么同时成功,要么同时…

经典DP-最长单调子序列

最长递增子序列 思路 定义状态: 我们定义一个数组 dp,其中 dp[i] 表示以 nums[i] 结尾的最长递增子序列的长度。初始化状态: 对于数组中的每个元素 nums[i],初始时都可以被视为一个长度为1的递增子序列,因此 dp[i] 的…

Mac电脑输入正确密码后提示密码错误

🏝 背景 Mac Pro 在擦键盘时,屏幕一直亮起,导致密码一致输入错误,想来没有什么问题便没有处理。但是!!!在擦完键盘后输入正确的密码依旧提示密码错误😱 接下来就是不断的重启、关机…

如何制作一款建材商城微信小程序

现在,微信小程序已经成为了很多企业和商家开展线上业务的重要渠道之一。对于建材商城而言,制作一款专属的微信小程序可以帮助企业更好地展示产品、提供服务,并增加销售额。下面将介绍如何制作一款建材商城微信小程序。 首先,登录【…

ai作画在线生成!这8个AI生图工具一定要知道。

过去的2023年被称作AI元年,随之而来的2024,被业内人士称之为AI应用元年,即随着大模型和各类AI应用的涌现速度放缓,人们关注的焦点也从产品层面(有哪些好用的AI应用),转移到AI如何更好地赋能实际…

如何下载和配置Linux(使用VMware部署Centos)--看这篇文章就懂了

目录: LinuxLinux概述Linux特点Linux的各个发行版本Linux和Windows区别 Linux的下载和安装安装VMWare虚拟机和Centos安装Centos实现Linux的远程登录使用Xshell连接 Linux Linux概述 Linux内核最初只是由芬兰人林纳斯托瓦兹1991年在赫尔辛基大学上学时出于个人爱好而编写的。 …

会声会影2024出来了吗?

近年来,随着人们对于娱乐和创意的需求不断增长,视频编辑软件也越来越受到大众的关注。其中,会声会影是一款备受欢迎的视频编辑软件,许多用户都在关注其新版本——会声会影2024。 然而,目前并没有官方宣布会声会影2024的…

一文速览深度伪造检测(Detection of Deepfakes):未来技术的守门人

一文速览深度伪造检测(Detection of Deepfakes):未来技术的守门人 前言一、Deepfakes技术原理卷积神经网络(CNN):细致的艺术学徒生成对抗网络(GAN):画家与评审的双重角色…

车载电子电器架构 —— 车辆模式管理

车载电子电器架构 —— 车辆模式管理 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的…

Python算法题集_组合总和

Python算法题集_组合总和 题39:组合总和1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【值传递回溯】2) 改进版一【引用传递堆栈回溯】3) 改进版二【过程值列表缓存遍历后检索】 4. 最优算法5. 相关资源 本文为Python算法题集之一的…

JVM运行流程

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:JavaEE 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 JVM 1. 运行流程2. 运行时数据区2.1 堆&am…

【精品】集合list去重

示例一&#xff1a;对于简单类型&#xff0c;比如String public static void main(String[] args) {List<String> list new ArrayList< >();list.add("aaa");list.add("bbb");list.add("bbb");list.add("ccc");list.add(…

C++——模板详解

目录 模板 函数模板 显示实例化 类模板 模板特点 模板 模板&#xff0c;就是把一个本来只能对特定类型实现的代码&#xff0c;变成一个模板类型&#xff0c;这个模板类型能转换为任何内置类型&#xff0c;从而让程序员只需要实现一个模板&#xff0c;就能对不同的数据进行操…

4.2 数据的描述性统计

1、总体规模的描述——总量指标 定义&#xff1a;反映在一定时间、空间条件下某种现象的总体规模、总水平或总成果的统计指标。 eg&#xff1a;营业额、利润等 2、总体规模的描述——相对指标 定义&#xff1a;两个有相互联系的指标数值之比 eg&#xff1a;目标完成率&…

GCN 翻译 - 1

ABSTRACT 我们提出了一种可扩展的在以图结构为基础的数据上的半监督学习&#xff0c;这种方法直接作用在图数据上&#xff0c;可以看做是卷积神经网络的变种。我们选择了图谱理论里面的一阶近似作为我们的卷积结构。我们的模型能够随着图的规模线性伸缩&#xff0c;并且隐藏层…

计算机专业大学四年应该如何规划(Java方向)

计算机专业的学生&#xff0c;如何在大学四年内提高自己的竞争力&#xff0c;毕业之后直接进大厂工作&#xff1f; 以下将从大学四年计算机专业的学习规划、课程设置、能力提升、参考书籍等方面&#xff0c;为同学们提供一些建议和指导。 大一&#xff1a; 主攻技能学习并且达…

枚举(蓝桥练习)(反倍数、特别数的和、找到最多的数、小蓝的漆房、小蓝和小桥的挑战)

目录 一、枚举算法介绍 二、解空间的类型 三、循环枚举解空间 四、例题 &#xff08;一、反倍数&#xff09; &#xff08;二、特别数的和&#xff09; &#xff08;三、找到最多的数&#xff09; &#xff08;四、小蓝的漆房&#xff09; &#xff08;五、小蓝和小桥的…

Linpmem:一款功能强大的Linux物理内存提取工具

关于Linpmem Linpmem是一款功能强大的Linux物理内存提取工具&#xff0c;该工具专为x64 Linux设计&#xff0c;可以帮助广大研究人员在执行安全分析过程中快速读取Linux物理内存数据。 该工具类似Windows下的Winpmem&#xff0c;Linpmem不是一个传统的内存转储工具&#xff0…

scons,一个实用的 Python 构建工具!

目录 前言 什么是SCons库&#xff1f; 安装SCons库 使用SCons库 SCons库的功能特性 1. 基于Python的构建描述语言 2. 自动化依赖管理 3. 多种构建环境支持 SCons库的应用场景 1. C/C项目构建 2. Python项目构建 3. 嵌入式系统开发 4. 持续集成环境 5. 跨平台项目构建 总…

如何实现无公网ip远程访问本地安卓Termux部署的MySQL数据库【内网穿透】

文章目录 前言1.安装MariaDB2.安装cpolar内网穿透工具3. 创建安全隧道映射mysql4. 公网远程连接5. 固定远程连接地址 前言 Android作为移动设备&#xff0c;尽管最初并非设计为服务器&#xff0c;但是随着技术的进步我们可以将Android配置为生产力工具&#xff0c;变成一个随身…