VM-UNet:视觉Mamba UNet用来医学图像分割 论文及代码解读

VM-UNet

  • 期刊分析
    • 摘要
    • 贡献
    • 方法
      • 整体框架
      • 1. Vision Mamba UNet (VM-UNet)
      • 2. VSS block
      • 3. Loss function
    • 实验
      • 1.对比实验
      • 2.消融实验
  • 可借鉴参考
  • 代码使用

期刊分析

期刊名: Arxiv
论文主页: VM-UNet
代码: Code

摘要

在医学图像分割领域,基于 CNN 和基于 Transformer 的模型都得到了广泛的探索。然而,CNN 在远程建模能力方面表现出局限性,而 Transformer 则受到其二次计算复杂性的限制。 最近,以 Mamba 为代表的状态空间模型 (SSM) 已成为一种有前途的方法。它们不仅擅长对远程交互进行建模,而且还保持线性计算复杂性。在本文中,利用状态空间模型,我们提出了一种用于医学图像分割的 Ushape 架构模型,名为 Vision Mamba UNet (VM-UNet)。具体来说,引入视觉状态空间(VSS)块作为基础块来捕获广泛的上下文信息,并构建不对称的编码器-解码器结构。我们在 ISIC17、ISIC18 和 Synapse 数据集上进行了全面的实验,结果表明 VM-UNet 在医学图像分割任务中表现出竞争力。据我们所知,这是第一个基于纯SSM模型构建的医学图像分割模型。我们的目标是建立一个基线,并为未来开发更高效、更有效的基于 SSM 的分割系统提供有价值的见解。我们的代码可在 https://github.com/JCruan519/VM-UNet 上获取。


贡献

  1. 提出了 VM-UNet,标志着首次探索纯粹基于 SSM 的模型在医学图像分割中的潜在应用。
  2. 在三个数据集上进行综合实验,结果表明VM-UNet表现出相当的竞争力。
  3. 我们为医学图像分割任务中基于纯SSM的模型建立了基线,提供了宝贵的见解,为开发更高效、更有效的基于SSM的分割方法铺平了道路。

方法

整体框架

整体依旧是传统UNet的结构,将原先的卷积模块换成了视觉状态空间模块(VSS block),将原先的上下采样换成了Patch Merging和Patch Expanding模块,因此跟着代码一个一个模块攻克即可!
在这里插入图片描述

1. Vision Mamba UNet (VM-UNet)

1. Patch Embedding层首先将图像划分为4×4的非重叠patch,然后将图像通道数转化为C
2. 编码器由四个阶段组成,在前三个阶段的末尾应用补丁合并操作,以减少输入特征的高度和宽度,同时增加通道数。
3. 类似地,解码器分为四个阶段。在最后三个阶段的开始,利用补丁扩展操作来减少特征通道的数量并增加高度和宽度。
4. 在解码器之后,采用最终投影层来恢复特征的大小以匹配分割目标。
5. 对于跳跃连接,采用简单的加法操作,没有花哨的东西,因此没有引入任何额外的参数。
疑问: 为什么在选择使用对称性的结构时,在最后一阶段解码器中只使用了1个VSS block呢?

2. VSS block

1. 源自 VMamaba 的 VSS 块是 VM-UNet 的核心模块,如图 1 (b) 所示。经过层归一化后,输入被分为两个分支。在第一个分支中,输入通过线​​性层,然后通过激活函数。在第二个分支中,输入通过线​​性层、深度可分离卷积和激活函数进行处理,然后输入 2D 选择性扫描 (SS2D) 模块以进行进一步的特征提取。随后,使用层归一化对特征进行归一化,然后使用第一个分支的输出执行按元素生成以合并两个路径。最后,使用线性层混合特征,并将此结果与残差连接相结合以形成 VSS 块的输出。本文默认采用SiLU[14]作为激活函数。


在这里插入图片描述
2. SS2D 由三个部分组成:扫描扩展操作(Scan Expanding)、S6 块和扫描合并操作(Scan Merging)这里不要和和Patch merging 和 Patch Expanding 弄混。如图2(a)所示,扫描扩展操作沿四个不同方向(左上到右下、右下到左上、右上到左下、左下到右上)展开输入图像)进入序列。然后,这些序列由 S6 块进行处理以进行特征提取,确保来自各个方向的信息得到彻底扫描,从而捕获不同的特征。随后,如图2(b)所示,扫描合并操作对来自四个方向的序列进行求和并合并,将输出图像恢复到与输入相同的大小。 S6 模块源自 Mamba [16],通过根据输入调整 SSM 的参数,在 S4 [17] 之上引入了一种选择机制。这使得模型能够区分并保留相关信息,同时过滤掉不相关的信息。 S6 块的伪代码如算法 1 所示。
3. SS2D中的核心S6
在这里插入图片描述
首先使用nn.linear()和x生成 Δ \Delta Δ,B,C;然后借助 Δ \Delta Δ,A,B生成 A ˉ \bar{A} Aˉ B ˉ \bar{B} Bˉ,最后借助公式计算出输出值y,具体解析见公式注释。

3. Loss function

在这里插入图片描述

1. VM-UNet的引入旨在验证纯基于SSM的模型在医学图像分割任务中的应用潜力。因此,我们专门利用最基本的二元交叉熵和骰子损失(BceDice 损失)以及交叉熵和骰子损失(CeDice 损失)分别作为二元和多类分割任务的损失函数,如方程 5 所示和 6.
2.
3.

实验

在本节中,我们在 VM-UNet 上针对皮肤病变和器官分割任务进行全面的实验。具体来说,我们评估了 VM-UNet 在 ISIC17、ISIC18 和 Synapse 数据集上的医学图像分割任务上的性能。 对于这两个数据集,我们提供了对多个指标的详细评估,包括并集平均交集 (mIoU)、Dice 相似系数 (DSC)、准确性 (Acc)、灵敏度 (Sen) 和特异性 (Spe)。

继之前的工作[28,9]之后,我们将 ISIC17 和 ISIC18 数据集中的图像大小调整为 256×256,将 Synapse 数据集中的图像大小调整为 224×224。为了防止过度拟合,采用了数据增强技术,包括随机翻转和随机旋转。 ISIC17和ISIC18数据集采用BceDice损失函数,Synapse数据集采用CeDice损失函数。

我们将批量大小设置为 32,并使用 AdamW [23] 优化器,初始学习率为 1e-3。 CosineAnnealingLR [22] 用作调度器,最多 50 次迭代,最小学习率为 1e-5。训练周期设置为 300。对于 VM-UNet,我们使用 VMamba-S [20] 的权重初始化编码器和解码器的权重,VMamba-S [20] 在 ImageNet-1k 上预训练。所有实验均在单个 NVIDIA RTX A6000 GPU 上进行。

1.对比实验

在这里插入图片描述
在这里插入图片描述
将 VM-UNet 与一些最先进的模型进行比较,实验结果如表 1 和表 2 所示。对于 ISIC17 和 ISIC18 数据集,我们的 VM-UNet 在 mIoU、DSC 和 Acc 方面优于其他模型指标。对于Synapse数据集,VM-UNet也取得了有竞争力的性能。例如,我们的模型在 DSC 和 HD95 指标上超过了 Swin-UNet(第一个纯基于 Transformer 的模型)1.95% 和 2.34mm。结果证明了基于SSM的模型在医学图像分割任务中的优越性。


找来了ISIC2018数据集上结果榜单如下:
在这里插入图片描述

VM-UNet 距离SOTA还有一点距离!!

2.消融实验

在这里插入图片描述

在本节中,我们使用 ISIC17 和 ISIC18 数据集对 VMUNet 的初始化进行消融实验。我们分别使用 VMamba-T 和 VMamba-S 的预训练权重初始化 VM-UNet1。实验结果如表 3 所示,表明更有效的预训练权重显着增强了 VM-UNet 的下游性能,表明 VM-UNet很大程度上受预训练权重的影响。

可以很明显看出,大一点的模型预训练权重就是厉害!

总体看下来:

  1. 作为mamba模型最重要的突破点,线性计算复杂度没有做实验证明,真的可惜!
  2. 作者选择在对称结构上使用不对称的VSS block数量,也是经过实验得到的(对称好肯定就用对称的了)。因此感觉将mamba模型放到分割任务中,只超过一些经典模型,对于SOTA模型还有一些距离,因此需要做好攻克的准备。
  3. 作者公开了代码,而且代码结构简单好用,太棒了!!

可借鉴参考

  1. 提供了一个baseline

  2. 提供了mamba模型的介绍流程

  3. 阅读U-Mamba 2024
    Ma, J., Li, F., Wang, B.: U-mamba: Enhancing long-range dependency for biomedical image segmentation. arXiv preprint arXiv:2401.04722 (2024)

  4. 阅读SegMamba 2024
    Xing, Z., Ye, T., Yang, Y., Liu, G., Zhu, L.: Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560 (2024)

代码使用

当前mamba_ssm包只发布了Linux版本,因此在Win系统下无法运行

  1. Linux下安装mamba_ssm

pip install mamba_ssm

  1. 复制代码使用
import time
import math
from functools import partial
from typing import Optional, Callable

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange, repeat
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
try:
    from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
except:
    pass

# an alternative for mamba_ssm (in which causal_conv1d is needed)
# try:
#     from selective_scan import selective_scan_fn as selective_scan_fn_v1
#     from selective_scan import selective_scan_ref as selective_scan_ref_v1
# except:
#     pass

DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})"


def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False):
    """
    u: r(B D L)
    delta: r(B D L)
    A: r(D N)
    B: r(B N L)
    C: r(B N L)
    D: r(D)
    z: r(B D L)
    delta_bias: r(D), fp32
    
    ignores:
        [.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu] 
    """
    import numpy as np
    
    # fvcore.nn.jit_handles
    def get_flops_einsum(input_shapes, equation):
        np_arrs = [np.zeros(s) for s in input_shapes]
        optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
        for line in optim.split("\n"):
            if "optimized flop" in line.lower():
                # divided by 2 because we count MAC (multiply-add counted as one flop)
                flop = float(np.floor(float(line.split(":")[-1]) / 2))
                return flop
    

    assert not with_complex

    flops = 0 # below code flops = 0
    if False:
        ...
        """
        dtype_in = u.dtype
        u = u.float()
        delta = delta.float()
        if delta_bias is not None:
            delta = delta + delta_bias[..., None].float()
        if delta_softplus:
            delta = F.softplus(delta)
        batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
        is_variable_B = B.dim() >= 3
        is_variable_C = C.dim() >= 3
        if A.is_complex():
            if is_variable_B:
                B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
            if is_variable_C:
                C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
        else:
            B = B.float()
            C = C.float()
        x = A.new_zeros((batch, dim, dstate))
        ys = []
        """

    flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln")
    if with_Group:
        flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln")
    else:
        flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln")
    if False:
        ...
        """
        deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
        if not is_variable_B:
            deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
        else:
            if B.dim() == 3:
                deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
            else:
                B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
                deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
        if is_variable_C and C.dim() == 4:
            C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
        last_state = None
        """
    
    in_for_flops = B * D * N   
    if with_Group:
        in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd")
    else:
        in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd")
    flops += L * in_for_flops 
    if False:
        ...
        """
        for i in range(u.shape[2]):
            x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
            if not is_variable_C:
                y = torch.einsum('bdn,dn->bd', x, C)
            else:
                if C.dim() == 3:
                    y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
                else:
                    y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
            if i == u.shape[2] - 1:
                last_state = x
            if y.is_complex():
                y = y.real * 2
            ys.append(y)
        y = torch.stack(ys, dim=2) # (batch dim L)
        """

    if with_D:
        flops += B * D * L
    if with_Z:
        flops += B * D * L
    if False:
        ...
        """
        out = y if D is None else y + u * rearrange(D, "d -> d 1")
        if z is not None:
            out = out * F.silu(z)
        out = out.to(dtype=dtype_in)
        """
    
    return flops


class PatchEmbed2D(nn.Module):
    r""" Image to Patch Embedding
    Args:
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """
    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, **kwargs):
        super().__init__()
        if isinstance(patch_size, int):
            patch_size = (patch_size, patch_size)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = self.proj(x).permute(0, 2, 3, 1)
        if self.norm is not None:
            x = self.norm(x)
        return x


class PatchMerging2D(nn.Module):
    r""" Patch Merging Layer.
    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        B, H, W, C = x.shape

        SHAPE_FIX = [-1, -1]
        if (W % 2 != 0) or (H % 2 != 0):
            print(f"Warning, x.shape {x.shape} is not match even ===========", flush=True)
            SHAPE_FIX[0] = H // 2
            SHAPE_FIX[1] = W // 2

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C

        if SHAPE_FIX[0] > 0:
            x0 = x0[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
            x1 = x1[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
            x2 = x2[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
            x3 = x3[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
        
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, H//2, W//2, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x
    

class PatchExpand2D(nn.Module):
    def __init__(self, dim, dim_scale=2, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim*2
        self.dim_scale = dim_scale
        self.expand = nn.Linear(self.dim, dim_scale*self.dim, bias=False)
        self.norm = norm_layer(self.dim // dim_scale)

    def forward(self, x):
        B, H, W, C = x.shape
        x = self.expand(x)

        x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale, c=C//self.dim_scale)
        x= self.norm(x)

        return x
    

class Final_PatchExpand2D(nn.Module):
    def __init__(self, dim, dim_scale=4, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.dim_scale = dim_scale
        self.expand = nn.Linear(self.dim, dim_scale*self.dim, bias=False)
        self.norm = norm_layer(self.dim // dim_scale)

    def forward(self, x):
        B, H, W, C = x.shape
        x = self.expand(x)

        x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale, c=C//self.dim_scale)
        x= self.norm(x)

        return x


class SS2D(nn.Module):
    def __init__(
        self,
        d_model,
        d_state=16,
        # d_state="auto", # 20240109
        d_conv=3,
        expand=2,
        dt_rank="auto",
        dt_min=0.001,
        dt_max=0.1,
        dt_init="random",
        dt_scale=1.0,
        dt_init_floor=1e-4,
        dropout=0.,
        conv_bias=True,
        bias=False,
        device=None,
        dtype=None,
        **kwargs,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.d_model = d_model
        self.d_state = d_state
        # self.d_state = math.ceil(self.d_model / 6) if d_state == "auto" else d_model # 20240109
        self.d_conv = d_conv
        self.expand = expand
        self.d_inner = int(self.expand * self.d_model)
        self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank

        self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
        self.conv2d = nn.Conv2d(
            in_channels=self.d_inner,
            out_channels=self.d_inner,
            groups=self.d_inner,
            bias=conv_bias,
            kernel_size=d_conv,
            padding=(d_conv - 1) // 2,
            **factory_kwargs,
        )
        self.act = nn.SiLU()

        self.x_proj = (
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
        )
        self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K=4, N, inner)
        del self.x_proj

        self.dt_projs = (
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
        )
        self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K=4, inner, rank)
        self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K=4, inner)
        del self.dt_projs
        
        self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) # (K=4, D, N)
        self.Ds = self.D_init(self.d_inner, copies=4, merge=True) # (K=4, D, N)

        # self.selective_scan = selective_scan_fn
        self.forward_core = self.forward_corev0

        self.out_norm = nn.LayerNorm(self.d_inner)
        self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
        self.dropout = nn.Dropout(dropout) if dropout > 0. else None

    @staticmethod
    def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4, **factory_kwargs):
        dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs)

        # Initialize special dt projection to preserve variance at initialization
        dt_init_std = dt_rank**-0.5 * dt_scale
        if dt_init == "constant":
            nn.init.constant_(dt_proj.weight, dt_init_std)
        elif dt_init == "random":
            nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
        else:
            raise NotImplementedError

        # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
        dt = torch.exp(
            torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        ).clamp(min=dt_init_floor)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        with torch.no_grad():
            dt_proj.bias.copy_(inv_dt)
        # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
        dt_proj.bias._no_reinit = True
        
        return dt_proj

    @staticmethod
    def A_log_init(d_state, d_inner, copies=1, device=None, merge=True):
        # S4D real initialization
        A = repeat(
            torch.arange(1, d_state + 1, dtype=torch.float32, device=device),
            "n -> d n",
            d=d_inner,
        ).contiguous()
        A_log = torch.log(A)  # Keep A_log in fp32
        if copies > 1:
            A_log = repeat(A_log, "d n -> r d n", r=copies)
            if merge:
                A_log = A_log.flatten(0, 1)
        A_log = nn.Parameter(A_log)
        A_log._no_weight_decay = True
        return A_log

    @staticmethod
    def D_init(d_inner, copies=1, device=None, merge=True):
        # D "skip" parameter
        D = torch.ones(d_inner, device=device)
        if copies > 1:
            D = repeat(D, "n1 -> r n1", r=copies)
            if merge:
                D = D.flatten(0, 1)
        D = nn.Parameter(D)  # Keep in fp32
        D._no_weight_decay = True
        return D

    def forward_corev0(self, x: torch.Tensor):
        self.selective_scan = selective_scan_fn
        
        B, C, H, W = x.shape
        L = H * W
        K = 4

        x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
        xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)

        x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
        # x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
        dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
        dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
        # dts = dts + self.dt_projs_bias.view(1, K, -1, 1)

        xs = xs.float().view(B, -1, L) # (b, k * d, l)
        dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
        Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
        Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
        Ds = self.Ds.float().view(-1) # (k * d)
        As = -torch.exp(self.A_logs.float()).view(-1, self.d_state)  # (k * d, d_state)
        dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)

        out_y = self.selective_scan(
            xs, dts, 
            As, Bs, Cs, Ds, z=None,
            delta_bias=dt_projs_bias,
            delta_softplus=True,
            return_last_state=False,
        ).view(B, K, -1, L)
        assert out_y.dtype == torch.float

        inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
        wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
        invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)

        return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y

    # an alternative to forward_corev1
    def forward_corev1(self, x: torch.Tensor):
        self.selective_scan = selective_scan_fn

        B, C, H, W = x.shape
        L = H * W
        K = 4

        x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
        xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)

        x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
        # x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
        dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
        dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
        # dts = dts + self.dt_projs_bias.view(1, K, -1, 1)

        xs = xs.float().view(B, -1, L) # (b, k * d, l)
        dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
        Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
        Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
        Ds = self.Ds.float().view(-1) # (k * d)
        As = -torch.exp(self.A_logs.float()).view(-1, self.d_state)  # (k * d, d_state)
        dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)

        out_y = self.selective_scan(
            xs, dts, 
            As, Bs, Cs, Ds,
            delta_bias=dt_projs_bias,
            delta_softplus=True,
        ).view(B, K, -1, L)
        assert out_y.dtype == torch.float

        inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
        wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
        invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)

        return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y

    def forward(self, x: torch.Tensor, **kwargs):
        B, H, W, C = x.shape

        xz = self.in_proj(x)
        x, z = xz.chunk(2, dim=-1) # (b, h, w, d)

        x = x.permute(0, 3, 1, 2).contiguous()
        x = self.act(self.conv2d(x)) # (b, d, h, w)
        y1, y2, y3, y4 = self.forward_core(x)
        assert y1.dtype == torch.float32
        y = y1 + y2 + y3 + y4
        y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
        y = self.out_norm(y)
        y = y * F.silu(z)
        out = self.out_proj(y)
        if self.dropout is not None:
            out = self.dropout(out)
        return out


class VSSBlock(nn.Module):
    def __init__(
        self,
        hidden_dim: int = 0,
        drop_path: float = 0,
        norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
        attn_drop_rate: float = 0,
        d_state: int = 16,
        **kwargs,
    ):
        super().__init__()
        self.ln_1 = norm_layer(hidden_dim)
        self.self_attention = SS2D(d_model=hidden_dim, dropout=attn_drop_rate, d_state=d_state, **kwargs)
        self.drop_path = DropPath(drop_path)

    def forward(self, input: torch.Tensor):
        x = input + self.drop_path(self.self_attention(self.ln_1(input)))
        return x


class VSSLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.
    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(
        self, 
        dim, 
        depth, 
        attn_drop=0.,
        drop_path=0., 
        norm_layer=nn.LayerNorm, 
        downsample=None, 
        use_checkpoint=False, 
        d_state=16,
        **kwargs,
    ):
        super().__init__()
        self.dim = dim
        self.use_checkpoint = use_checkpoint

        self.blocks = nn.ModuleList([
            VSSBlock(
                hidden_dim=dim,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer,
                attn_drop_rate=attn_drop,
                d_state=d_state,
            )
            for i in range(depth)])
        
        if True: # is this really applied? Yes, but been overriden later in VSSM!
            def _init_weights(module: nn.Module):
                for name, p in module.named_parameters():
                    if name in ["out_proj.weight"]:
                        p = p.clone().detach_() # fake init, just to keep the seed ....
                        nn.init.kaiming_uniform_(p, a=math.sqrt(5))
            self.apply(_init_weights)

        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None


    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        
        if self.downsample is not None:
            x = self.downsample(x)

        return x
    


class VSSLayer_up(nn.Module):
    """ A basic Swin Transformer layer for one stage.
    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(
        self, 
        dim, 
        depth, 
        attn_drop=0.,
        drop_path=0., 
        norm_layer=nn.LayerNorm, 
        upsample=None, 
        use_checkpoint=False, 
        d_state=16,
        **kwargs,
    ):
        super().__init__()
        self.dim = dim
        self.use_checkpoint = use_checkpoint

        self.blocks = nn.ModuleList([
            VSSBlock(
                hidden_dim=dim,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer,
                attn_drop_rate=attn_drop,
                d_state=d_state,
            )
            for i in range(depth)])
        
        if True: # is this really applied? Yes, but been overriden later in VSSM!
            def _init_weights(module: nn.Module):
                for name, p in module.named_parameters():
                    if name in ["out_proj.weight"]:
                        p = p.clone().detach_() # fake init, just to keep the seed ....
                        nn.init.kaiming_uniform_(p, a=math.sqrt(5))
            self.apply(_init_weights)

        if upsample is not None:
            self.upsample = upsample(dim=dim, norm_layer=norm_layer)
        else:
            self.upsample = None


    def forward(self, x):
        if self.upsample is not None:
            x = self.upsample(x)
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        return x
    


class VSSM(nn.Module):
    def __init__(self, patch_size=4, in_chans=3, num_classes=1000, depths=[2, 2, 9, 2], depths_decoder=[2, 9, 2, 2],
                 dims=[96, 192, 384, 768], dims_decoder=[768, 384, 192, 96], d_state=16, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()
        self.num_classes = num_classes
        self.num_layers = len(depths)
        if isinstance(dims, int):
            dims = [int(dims * 2 ** i_layer) for i_layer in range(self.num_layers)]
        self.embed_dim = dims[0]
        self.num_features = dims[-1]
        self.dims = dims

        self.patch_embed = PatchEmbed2D(patch_size=patch_size, in_chans=in_chans, embed_dim=self.embed_dim,
            norm_layer=norm_layer if patch_norm else None)

        # WASTED absolute position embedding ======================
        self.ape = False
        # self.ape = False
        # drop_rate = 0.0
        if self.ape:
            self.patches_resolution = self.patch_embed.patches_resolution
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, *self.patches_resolution, self.embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        dpr_decoder = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths_decoder))][::-1]

        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = VSSLayer(
                dim=dims[i_layer],
                depth=depths[i_layer],
                d_state=math.ceil(dims[0] / 6) if d_state is None else d_state, # 20240109
                drop=drop_rate, 
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging2D if (i_layer < self.num_layers - 1) else None,
                use_checkpoint=use_checkpoint,
            )
            self.layers.append(layer)

        self.layers_up = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = VSSLayer_up(
                dim=dims_decoder[i_layer],
                depth=depths_decoder[i_layer],
                d_state=math.ceil(dims[0] / 6) if d_state is None else d_state, # 20240109
                drop=drop_rate, 
                attn_drop=attn_drop_rate,
                drop_path=dpr_decoder[sum(depths_decoder[:i_layer]):sum(depths_decoder[:i_layer + 1])],
                norm_layer=norm_layer,
                upsample=PatchExpand2D if (i_layer != 0) else None,
                use_checkpoint=use_checkpoint,
            )
            self.layers_up.append(layer)

        self.final_up = Final_PatchExpand2D(dim=dims_decoder[-1], dim_scale=4, norm_layer=norm_layer)
        self.final_conv = nn.Conv2d(dims_decoder[-1]//4, num_classes, 1)

        # self.norm = norm_layer(self.num_features)
        # self.avgpool = nn.AdaptiveAvgPool1d(1)
        # self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m: nn.Module):
        """
        out_proj.weight which is previously initilized in VSSBlock, would be cleared in nn.Linear
        no fc.weight found in the any of the model parameters
        no nn.Embedding found in the any of the model parameters
        so the thing is, VSSBlock initialization is useless
        
        Conv2D is not intialized !!!
        """
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        skip_list = []
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            skip_list.append(x)
            x = layer(x)
        return x, skip_list
    
    def forward_features_up(self, x, skip_list):
        for inx, layer_up in enumerate(self.layers_up):
            if inx == 0:
                x = layer_up(x)
            else:
                x = layer_up(x+skip_list[-inx])

        return x
    
    def forward_final(self, x):
        x = self.final_up(x)
        x = x.permute(0,3,1,2)
        x = self.final_conv(x)
        return x

    def forward_backbone(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x)
        return x

    def forward(self, x):
        x, skip_list = self.forward_features(x)
        x = self.forward_features_up(x, skip_list)
        x = self.forward_final(x)
        
        return x


import torch
from torch import nn


class VMUNet(nn.Module):
    def __init__(self, 
                 input_channels=3, 
                 num_classes=1,
                 depths=[2, 2, 9, 2], 
                 depths_decoder=[2, 9, 2, 2],
                 drop_path_rate=0.2,
                 load_ckpt_path=None,
                ):
        super().__init__()

        self.load_ckpt_path = load_ckpt_path
        self.num_classes = num_classes

        self.vmunet = VSSM(in_chans=input_channels,
                           num_classes=num_classes,
                           depths=depths,
                           depths_decoder=depths_decoder,
                           drop_path_rate=drop_path_rate,
                        )
    
    def forward(self, x):
        if x.size()[1] == 1:
            x = x.repeat(1,3,1,1)
        logits = self.vmunet(x)
        if self.num_classes == 1: return torch.sigmoid(logits)
        else: return logits
    
    def load_from(self):
        if self.load_ckpt_path is not None:
            model_dict = self.vmunet.state_dict()
            modelCheckpoint = torch.load(self.load_ckpt_path)
            pretrained_dict = modelCheckpoint['model']
            # 过滤操作
            new_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict.keys()}
            model_dict.update(new_dict)
            # 打印出来,更新了多少的参数
            print('Total model_dict: {}, Total pretrained_dict: {}, update: {}'.format(len(model_dict), len(pretrained_dict), len(new_dict)))
            self.vmunet.load_state_dict(model_dict)

            not_loaded_keys = [k for k in pretrained_dict.keys() if k not in new_dict.keys()]
            print('Not loaded keys:', not_loaded_keys)
            print("encoder loaded finished!")

            model_dict = self.vmunet.state_dict()
            modelCheckpoint = torch.load(self.load_ckpt_path)
            pretrained_odict = modelCheckpoint['model']
            pretrained_dict = {}
            for k, v in pretrained_odict.items():
                if 'layers.0' in k: 
                    new_k = k.replace('layers.0', 'layers_up.3')
                    pretrained_dict[new_k] = v
                elif 'layers.1' in k: 
                    new_k = k.replace('layers.1', 'layers_up.2')
                    pretrained_dict[new_k] = v
                elif 'layers.2' in k: 
                    new_k = k.replace('layers.2', 'layers_up.1')
                    pretrained_dict[new_k] = v
                elif 'layers.3' in k: 
                    new_k = k.replace('layers.3', 'layers_up.0')
                    pretrained_dict[new_k] = v
            # 过滤操作
            new_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict.keys()}
            model_dict.update(new_dict)
            # 打印出来,更新了多少的参数
            print('Total model_dict: {}, Total pretrained_dict: {}, update: {}'.format(len(model_dict), len(pretrained_dict), len(new_dict)))
            self.vmunet.load_state_dict(model_dict)
            
            # 找到没有加载的键(keys)
            not_loaded_keys = [k for k in pretrained_dict.keys() if k not in new_dict.keys()]
            print('Not loaded keys:', not_loaded_keys)
            print("decoder loaded finished!")

x = torch.randn(3, 3, 256, 256).to("cuda:0")
net = VMUNet().to("cuda:0")
print(net(x).shape)

直接复制使用,相较于原始代码,因为没安装成功selective_scan包,扫描代码发现其中只用到了一处,将其改成了mamba_scan中的函数了,实测效果不错,在自己最近做的任务中,分数可以排进前五!!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/411289.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 读取创建word文档

本篇文章内容为使用python 读取word文档和创建word文档 读取doc文件 引入类库 示例如下&#xff1a; import win32com import win32com.client import os 读取doc文件 通过得到的doc文件路径调用系统word功能。 打开文件获取其中的文本信息&#xff0c;输出文本信息&#…

【Java程序员面试专栏 算法思维】五 高频面试算法题:贪心算法

一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,本篇主要聊聊贪心算法,所以放到一篇Blog中集中练习 题目关键字解题思路时间空间买卖股票的最佳时机 II贪心算法遍历整个股票交易日价格列表 price,并执行贪心策…

算法-计算机基础知识

1&#xff0c;坐标系与数学不同&#xff0c;x轴向下&#xff0c;y轴向右 2.案例&#xff1a;螺旋矩阵 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 class Solution {public List<Integer> spiralOrder(int[][] matrix) { List<Integer&…

Android 面试问题 2024 版(其三)

Android 面试问题 2024 版&#xff08;其三&#xff09; 十一、版本控制十二、Play 商店和应用程序部署十三、无障碍十四、第三方库和 API十五、解决问题的能力十六、基于 JD 的非常高级别的问题 十一、版本控制 什么是版本控制&#xff0c;为什么它在软件开发中很重要&#x…

sockaddr结构体、sockaddr_in结构体和gethostbyname函数

sockaddr结构体 sockaddr结构体是在网络编程中经常使用的一个数据结构&#xff0c;用来表示套接字地址。它是一个通用的地址结构&#xff0c;可以用于不同的协议&#xff08;如IPv4、IPv6、UNIX等&#xff09;。 在C语言中&#xff0c;sockaddr结构体定义如下&#xff1a; s…

揭密字节跳动薪资职级,资深测试居然能拿......

曾经的互联网是PC的时代&#xff0c;随着智能手机的普及&#xff0c;移动互联网开始飞速崛起。而字节跳动抓住了这波机遇&#xff0c;2015年&#xff0c;字节跳动全面加码短视频&#xff0c;从那以后&#xff0c;抖音成为了字节跳动用户、收入和估值的最大增长引擎。 自从字节逐…

考研408深度分析+全年规划

408确实很难&#xff0c;他的难分两方面 一方面是408本身的复习难度&#xff0c;我们都知道&#xff0c;408的考察科目有四科&#xff0c;分别是数据结构&#xff0c;计算机组成原理&#xff0c;操作系统和计算机网络。大家回想一下自己在大学本科时候学习这些专业课的难度&am…

Day01:Web应用架构搭建站库分离路由访问配置受限DNS解析

目录 常规的Web应用搭建 三种常规网站搭建模式 程序源码 中间件配置 数据库类型 文件访问路径 总结 章节知识点&#xff1a; 应用架构&#xff1a;Web/APP/云应用/三方服务/负载均衡等 安全产品&#xff1a;CDN/WAF/IDS/IPS/蜜罐/防火墙/杀毒等 渗透命令&#xff1a;文件…

构建企业多维模型,助力财务战略规划

财务规划与分析是一个企业需要广泛实践、改革优化的领域。战略规划对于财务管理来说&#xff0c;对企业的未来发展具有长期且不可逆的影响。一般企业在做重要战略决策时面临的主要挑战是对于可能结果复杂性的预测&#xff0c;其干涉因素很多&#xff0c;规划范围也十分广泛&…

鸿蒙开发—【扩展textinput组件】

扩展鸿蒙textinput组件&#xff0c;支持快速扩展展性&#xff0c;标题文本等&#xff0c;文本内容双向绑定、文本组件快速复用。 /*** 单选文本*/ Component export default struct DiygwInput{//绑定的值Link value:string;//未选中图标State labelImg: Resource $r(app…

Three.js-03Vite打包入门

1.安装 说明&#xff1a;创建文件以后&#xff0c;按照提示进行操作。如cd文件夹&#xff0c;npm i ,npm run dev等操作。 npm create vitelatest 2.安装three npm i three.js 4.打开npm官网 说明:搜索three第三方库。按照案例进行操作。 5.修改App.vue文件 <script set…

17.openEuler操作系统启动管理

openEuler OECA认证辅导,标红的文字为学习重点和考点。 如果需要做实验,建议安装麒麟信安、银河麒麟、统信等具有图形化的操作系统,其安装与openeuler基本一致。 1.系统启动流程介绍 Linux系统启动流程: POST->Bios->Grub->kernel+initrd->systemd(init)->…

CMake和VsCode调试的使用

目录 CMake使用 CMake下载 创建系统文件目录 MakeList编写规范 VsCode启动调试 添加配置文件 添加断点&#xff0c;启动调试 CMake使用 CMake下载 输入指令 sudo apt install cmake 安装cmake&#xff0c;使用 cmake -version可查看cmake的版本信息 创建系统文件目…

2024Node.js零基础教程(小白友好型),nodejs新手到高手,(九)NodeJS入门——http模块

060_http模块_网页URL之绝对路径 hello&#xff0c;大家好&#xff0c;这一个小题的话我们来补充一个之前学习过的内容&#xff0c;就是网页当中的URL&#xff0c;咱们这个小题的话主要是来说一下绝对路径&#xff0c;有同学可能会说&#xff0c;这这这&#xff0c;不对劲&…

Linux使用Docker部署Nacos容器并结合内网穿透实现公网访问本地服务

文章目录 推荐1. Docker 运行Nacos2. 本地访问Nacos3. Linux安装Cpolar4. 配置Nacos UI界面公网地址5. 远程访问 Nacos UI界面6. 固定Nacos UI界面公网地址7. 固定地址访问Plik 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff…

网络设备和网络软件

文章目录 网络设备和网络软件网卡交换机交换机的三个主要功能交换机的工作原理第二层交换和第三层交换交换机的堆叠和级联 路由器路由器工作原理 网关网关的分类 无线接入点(AP)调制解调器网络软件 网络设备和网络软件 网卡 网络接口卡又称网络适配器&#xff0c;简称网卡。网…

代码随想录day34--动态规划的应用2 | LeetCode343.整数拆分、LeetCode96.不同的二叉搜索树

LeetCode343.整数拆分 题目描述&#xff1a; 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0c;并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n 2 输出: 1 解释: 2 1 1, 1 1 1。…

如何使用Axure RP制作web页面并实现无公网ip远程访问——“cpolar内网穿透”

文章目录 前言1.在AxureRP中生成HTML文件2.配置IIS服务3.添加防火墙安全策略4.使用cpolar内网穿透实现公网访问4.1 登录cpolar web ui管理界面4.2 启动website隧道4.3 获取公网URL地址4.4. 公网远程访问内网web站点4.5 配置固定二级子域名公网访问内网web站点4.5.1创建一条固定…

智慧校园|智慧校园管理小程序|基于微信小程序的智慧校园管理系统设计与实现(源码+数据库+文档)

智慧校园管理小程序目录 目录 基于微信小程序的智慧校园管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、微信小程序前台 2、管理员后台 &#xff08;1&#xff09;学生信息管理 &#xff08;2&#xff09; 作业信息管理 &#xff08;3&#xff09;公告…

DM数据库学习之路(十六)DEM部署DM8DPC集群

DEM部署DPC集群 DPC准备工作 在所有安装DPC服务器上部署dmagent&#xff0c;dmagent的运行环境需要依赖JAVA环境&#xff0c;JAVA版本必须为JAVA1.8。 创建用户 所有安装DPC服务器&#xff0c;手工建dmdba用户 # groupadd dinstall # useradd -g dinstall -d /home/dmdba…