Redis+Caffeine 太强了!二级缓存可以这样实现!

在实际的项目中,我们通常会将一些热点数据存储到RedisMemCache这类缓存中间件中,只有当缓存的访问没有命中时再查询数据库。

在一些场景下可能还需要进一步配合本地缓存使用,例如Guava cacheCaffeine,从而再次提升程序的响应速度与服务性能。

于是,就产生了使用本地缓存作为一级缓存,再加上远程缓存作为二级缓存的两级缓存架构。

二级缓存的访问流程可以用下面这张图来表示:

图片

优点与问题

图片

准备工作

图片

<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
    <version>2.9.2</version>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-pool2</artifactId>
    <version>2.8.1</version>
</dependency>

application.yml中配置Redis的连接信息:

spring:
  redis:
    host: 127.0.0.1
    port: 6379
    database: 0
    timeout: 10000ms
    lettuce:
      pool:
        max-active: 8
        max-wait: -1ms
        max-idle: 8
        min-idle: 0

我们使用RedisTemplate来对redis进行读写操作。

下面在单机环境下,将按照对业务侵入性的不同程度,分三个版本来实现两级缓存的使用。

V1.0版本

在使用Cache前,需要先配置一下相关参数:

@Configuration
public class CaffeineConfig {
    @Bean
    public Cache<String,Object> caffeineCache(){
        return Caffeine.newBuilder()
                .initialCapacity(128)//初始大小
                .maximumSize(1024)//最大数量
                .expireAfterWrite(60, TimeUnit.SECONDS)//过期时间
                .build();
    }
}

图片

@Service
@AllArgsConstructor
public class OrderServiceImpl implements OrderService {
    private final OrderMapper orderMapper;

    @Override
    public Order getOrderById(Long id) {  
        Order order = orderMapper.selectOne(new LambdaQueryWrapper<Order>()
              .eq(Order::getId, id));    
        return order;
    }
    
    @Override
    public void updateOrder(Order order) {      
        orderMapper.updateById(order);
    }
    
    @Override
    public void deleteOrder(Long id) {
        orderMapper.deleteById(id);
    }
}

接下来,对上面的OrderService进行改造,在执行正常业务外再加上操作两级缓存的代码,先看改造后的查询操作:

public Order getOrderById(Long id) {
    String key = CacheConstant.ORDER + id;
    Order order = (Order) cache.get(key,
            k -> {
                //先查询 Redis
                Object obj = redisTemplate.opsForValue().get(k);
                if (Objects.nonNull(obj)) {
                    log.info("get data from redis");
                    return obj;
                }

                // Redis没有则查询 DB
                log.info("get data from database");
                Order myOrder = orderMapper.selectOne(new LambdaQueryWrapper<Order>()
                        .eq(Order::getId, id));
                redisTemplate.opsForValue().set(k, myOrder, 120, TimeUnit.SECONDS);
                return myOrder;
            });
    return order;
}

图片

图片

图片

图片

public void updateOrder(Order order) {
    log.info("update order data");
    String key=CacheConstant.ORDER + order.getId();
    orderMapper.updateById(order);
    //修改 Redis
    redisTemplate.opsForValue().set(key,order,120, TimeUnit.SECONDS);
    // 修改本地缓存
    cache.put(key,order);
}

看一下下面图中接口的调用、以及缓存的刷新过程。可以看到在更新数据后,同步刷新了缓存中的内容,再之后的访问接口时不查询数据库,也可以拿到正确的结果:

图片

最后再来看一下删除操作,在删除数据的同时,手动移除ReidsCaffeine中的缓存:

public void deleteOrder(Long id) {
    log.info("delete order");
    orderMapper.deleteById(id);
    String key= CacheConstant.ORDER + id;
    redisTemplate.delete(key);
    cache.invalidate(key);
}

我们在删除某个缓存后,再次调用之前的查询接口时,又会出现重新查询数据库的情况:

图片

图片

V2.0版本

图片

@Configuration
public class CacheManagerConfig {
    @Bean
    public CacheManager cacheManager(){
        CaffeineCacheManager cacheManager=new CaffeineCacheManager();
        cacheManager.setCaffeine(Caffeine.newBuilder()
                .initialCapacity(128)
                .maximumSize(1024)
                .expireAfterWrite(60, TimeUnit.SECONDS));
        return cacheManager;
    }
}

图片

@Cacheable(value = "order",key = "#id")
//@Cacheable(cacheNames = "order",key = "#p0")
public Order getOrderById(Long id) {
    String key= CacheConstant.ORDER + id;
    //先查询 Redis
    Object obj = redisTemplate.opsForValue().get(key);
    if (Objects.nonNull(obj)){
        log.info("get data from redis");
        return (Order) obj;
    }
    // Redis没有则查询 DB
    log.info("get data from database");
    Order myOrder = orderMapper.selectOne(new LambdaQueryWrapper<Order>()
            .eq(Order::getId, id));
    redisTemplate.opsForValue().set(key,myOrder,120, TimeUnit.SECONDS);
    return myOrder;
}

图片

#参数名
#参数对象.属性名
#p参数对应下标

图片

@CachePut(cacheNames = "order",key = "#order.id")
public Order updateOrder(Order order) {
    log.info("update order data");
    orderMapper.updateById(order);
    //修改 Redis
    redisTemplate.opsForValue().set(CacheConstant.ORDER + order.getId(),
            order, 120, TimeUnit.SECONDS);
    return order;
}

图片

@CacheEvict(cacheNames = "order",key = "#id")
public void deleteOrder(Long id) {
    log.info("delete order");
    orderMapper.deleteById(id);
    redisTemplate.delete(CacheConstant.ORDER + id);
}

图片

V3.0版本

模仿spring通过注解管理缓存的方式,我们也可以选择自定义注解,然后在切面中处理缓存,从而将对业务代码的入侵降到最低。

首先定义一个注解,用于添加在需要操作缓存的方法上:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface DoubleCache {
    String cacheName();
    String key(); //支持springEl表达式
    long l2TimeOut() default 120;
    CacheType type() default CacheType.FULL;
}

我们使用cacheName + key作为缓存的真正key(仅存在一个Cache中,不做CacheName隔离),l2TimeOut为可以设置的二级缓存Redis的过期时间,type是一个枚举类型的变量,表示操作缓存的类型,枚举类型定义如下:

public enum CacheType {
    FULL,   //存取
    PUT,    //只存
    DELETE  //删除
}

因为要使key支持springEl表达式,所以需要写一个方法,使用表达式解析器解析参数:

public static String parse(String elString, TreeMap<String,Object> map){
    elString=String.format("#{%s}",elString);
    //创建表达式解析器
    ExpressionParser parser = new SpelExpressionParser();
    //通过evaluationContext.setVariable可以在上下文中设定变量。
    EvaluationContext context = new StandardEvaluationContext();
    map.entrySet().forEach(entry->
        context.setVariable(entry.getKey(),entry.getValue())
    );

    //解析表达式
    Expression expression = parser.parseExpression(elString, new TemplateParserContext());
    //使用Expression.getValue()获取表达式的值,这里传入了Evaluation上下文
    String value = expression.getValue(context, String.class);
    return value;
}

参数中的elString对应的就是注解中key的值,map是将原方法的参数封装后的结果。简单进行一下测试:

public void test() {
    String elString="#order.money";
    String elString2="#user";
    String elString3="#p0";   

    TreeMap<String,Object> map=new TreeMap<>();
    Order order = new Order();
    order.setId(111L);
    order.setMoney(123D);
    map.put("order",order);
    map.put("user","Hydra");

    String val = parse(elString, map);
    String val2 = parse(elString2, map);
    String val3 = parse(elString3, map);

    System.out.println(val);
    System.out.println(val2);
    System.out.println(val3);
}

执行结果如下,可以看到支持按照参数名称、参数对象的属性名称读取,但是不支持按照参数下标读取,暂时留个小坑以后再处理。

123.0
Hydra
null

至于Cache相关参数的配置,我们沿用V1版本中的配置即可。准备工作做完了,下面我们定义切面,在切面中操作Cache来读写Caffeine的缓存,操作RedisTemplate读写Redis缓存。

@Slf4j @Component @Aspect 
@AllArgsConstructor
public class CacheAspect {
    private final Cache cache;
    private final RedisTemplate redisTemplate;

    @Pointcut("@annotation(com.cn.dc.annotation.DoubleCache)")
    public void cacheAspect() {
    }

    @Around("cacheAspect()")
    public Object doAround(ProceedingJoinPoint point) throws Throwable {
        MethodSignature signature = (MethodSignature) point.getSignature();
        Method method = signature.getMethod();

        //拼接解析springEl表达式的map
        String[] paramNames = signature.getParameterNames();
        Object[] args = point.getArgs();
        TreeMap<String, Object> treeMap = new TreeMap<>();
        for (int i = 0; i < paramNames.length; i++) {
            treeMap.put(paramNames[i],args[i]);
        }

        DoubleCache annotation = method.getAnnotation(DoubleCache.class);
        String elResult = ElParser.parse(annotation.key(), treeMap);
        String realKey = annotation.cacheName() + CacheConstant.COLON + elResult;

        //强制更新
        if (annotation.type()== CacheType.PUT){
            Object object = point.proceed();
            redisTemplate.opsForValue().set(realKey, object,annotation.l2TimeOut(), TimeUnit.SECONDS);
            cache.put(realKey, object);
            return object;
        }
        //删除
        else if (annotation.type()== CacheType.DELETE){
            redisTemplate.delete(realKey);
            cache.invalidate(realKey);
            return point.proceed();
        }

        //读写,查询Caffeine
        Object caffeineCache = cache.getIfPresent(realKey);
        if (Objects.nonNull(caffeineCache)) {
            log.info("get data from caffeine");
            return caffeineCache;
        }

        //查询Redis
        Object redisCache = redisTemplate.opsForValue().get(realKey);
        if (Objects.nonNull(redisCache)) {
            log.info("get data from redis");
            cache.put(realKey, redisCache);
            return redisCache;
        }

        log.info("get data from database");
        Object object = point.proceed();
        if (Objects.nonNull(object)){
            //写入Redis
            redisTemplate.opsForValue().set(realKey, object,annotation.l2TimeOut(), TimeUnit.SECONDS);
            //写入Caffeine
            cache.put(realKey, object);        
        }
        return object;
    }
}

图片

@DoubleCache(cacheName = "order", key = "#id",
        type = CacheType.FULL)
public Order getOrderById(Long id) {
    Order myOrder = orderMapper.selectOne(new LambdaQueryWrapper<Order>()
            .eq(Order::getId, id));
    return myOrder;
}

@DoubleCache(cacheName = "order",key = "#order.id",
        type = CacheType.PUT)
public Order updateOrder(Order order) {
    orderMapper.updateById(order);
    return order;
}

@DoubleCache(cacheName = "order",key = "#id",
        type = CacheType.DELETE)
public void deleteOrder(Long id) {
    orderMapper.deleteById(id);
}

到这里,基于切面操作缓存的改造就完成了,Service的代码也瞬间清爽了很多,让我们可以继续专注于业务逻辑处理,而不用费心去操作两级缓存了。

总结

本文按照对业务入侵的递减程度,依次介绍了三种管理两级缓存的方法。

本文中只是介绍了最基础的使用,实际中的并发问题、事务的回滚问题都需要考虑,还需要思考什么数据适合放在一级缓存、什么数据适合放在二级缓存等等的其他问题。

最后说一句(求关注!别白嫖!)

如果这篇文章对您有所帮助,或者有所启发的话,求一键三连:点赞、转发、在看。

关注公众号:woniuxgg,在公众号中回复:笔记  就可以获得蜗牛为你精心准备的java实战语雀笔记,回复面试、开发手册、有超赞的粉丝福利!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/411187.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣--双指针167.二数之和Ⅱ

这题一个穷举方法是比较好想到的&#xff1a; class Solution { public:vector<int> twoSum(vector<int>& numbers, int target) {int i,j;int nnumbers.size();vector<int>result(2,0);for(i0;i<n-1;i){for(ji1;j<n;j){if(numbers[i]numbers[j…

win10安装使用AxurePR9

背景&#xff1a;win10 安装、汉化 Axure Pr9 下载 安装包 链接&#xff1a;https://pan.baidu.com/s/1taMgh2zLbaFK7VTfUXTHdQ 提取码&#xff1a;kygo 安装 修改安装目录 打开是英文的 汉化 复制lang包到Axure安装包 再打开就是中文 问题 发布html后火狐无法打开 一、…

[计算机网络]--IP协议

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、IP协议…

C/C++文件操作

一、文本文件操作 1、写文件操作 代码 #include<fstream> #include<iostream>int main() {ofstream outfile("Student.txt", ios::out);if (!outfile) {cout << "文件写入失败" << endl;exit(0); //程序终止}cout << &qu…

学算法要读《算法导论》吗?

大家好&#xff0c;我是 方圆。这篇文章是我学习算法的心得&#xff0c;希望它能够给一些将要学习算法且准备要读大部头算法书籍的朋友一些参考&#xff0c;节省一些时间&#xff0c;也为了给经典的“黑皮书”祛魅&#xff0c;我觉得这些书籍在大部分互联网从业者心中已经不再是…

PHP中的飞碟运算符、取反运算符、对比非ASCII字符串、对比浮点数操作

对比浮点数 在电脑里存储的浮点数可能会和输入的值有些许差异&#xff0c;比如输入的是10.0&#xff0c;但存储的是10.00001. 在比较两个浮点数是否相等时可以计算下两个数的差值&#xff0c;然后查看下两数之差是否小于可以接受的阈值&#xff0c;如果要求精度在小数点后5位的…

如何实现固定公网地址远程访问内网Wagtail管理界面

文章目录 前言1. 安装并运行Wagtail1.1 创建并激活虚拟环境 2. 安装cpolar内网穿透工具3. 实现Wagtail公网访问4. 固定的Wagtail公网地址 前言 Wagtail是一个用Python编写的开源CMS&#xff0c;建立在Django Web框架上。Wagtail 是一个基于 Django 的开源内容管理系统&#xf…

【总结】Maxwell学习笔记

1.Maxwell简介 Maxwell 是一款用Java编写的MySQL变更数据抓取软件&#xff0c;它会实时监控Mysql数据库的数据变更操作&#xff08;包括insert、update、delete&#xff09;&#xff0c;并将变更数据以 JSON 格式发送给 Kafka、Kinesi等流数据处理平台 官网地址&#xff1a;M…

代码随想录算法训练营第四三天 | 最后一块石头的重量 II、目标和、一和零

目录 最后一块石头的重量 II目标和一和零 LeetCode 1049. 最后一块石头的重量 II LeetCode 494. 目标和 LeetCode 474.一和零 最后一块石头的重量 II class Solution {// dp[j] 容量为j 的背包&#xff0c;最多可以背最大重量为dp[j]。// dp[j] Math.max(dp[j], dp[j - sto…

索引学习以及索引原理

有时候&#xff0c;建索引并不一定会加快查询效率。但是&#xff0c;有时候&#xff0c;表的数据量是大数据量的话&#xff0c;还是要看下是否能使用索引优化查询效率。 1、建索引的几大原则&#xff1a; 1.1、最左前缀匹配原则非常重要的原则&#xff0c;mysql会一直向右匹配…

猫头虎分享已解决Bug || AttributeError: ‘Sequential‘ object has no attribute ‘session‘

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

大数据开发项目--音乐排行榜

环境&#xff1a;windows10&#xff0c;centos7.9&#xff0c;hadoop3.2、hbase2.5.3和zookeeper3.8完全分布式&#xff1b; 环境搭建具体操作请参考以下文章&#xff1a; CentOS7 Hadoop3.X完全分布式环境搭建 Hadoop3.x完全分布式环境搭建Zookeeper和Hbase 1. 集成MapReduce…

猫头虎分享已解决Bug || Error: Maximum update depth exceeded in React

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

【Crypto | CTF】BugKu 简单的RSA

天命&#xff1a;这题也不算简单了&#xff0c;要反编译&#xff0c;要灵活一点 首先收到pyc文件&#xff0c;拿去反编译出来&#xff0c;可以用在线反编译&#xff0c;也可以用工具反编译 在线&#xff1a;python反编译 - 在线工具 工具&#xff1a;https://download.csdn.n…

【算法小讲堂】#1 贪心算法

引入——关于贪心算法 我们先来做一个小游戏——现在假设自己是一个小偷&#xff0c;桌上有一些物品&#xff0c;包括一台iPhone15、一个充电宝、一个眼罩和一个溜溜梅。此时&#xff0c;你听说警察即将到来&#xff0c;那么你会先带走哪个东西呢&#xff1f; 一般来讲&#xf…

c++数据结构算法复习基础--1

一、大体复习内容 复习思路&#xff1b; 二、数据结构算法-常见复杂度汇总介绍-性能对比-图表展示 数据结构: 相互之间存在一种或者多种特定关系的数据元素的集合。在逻辑上可以分为线性结构&#xff0c;散列结构、树形结构&#xff0c;图形结构等等。 数据结构说的是组织…

x-cmd pkg | g - 功能和交互更为丰富的 `ls` 替代方案

目录 简介首次用户功能特点竞品和相关作品进一步阅读 简介 g 是一项用 Go 开发的、功能和交互更为丰富的 ls 替代方案。它拥有 100 多个功能选项&#xff0c;主要是通过各式图标、各种布局选项和 git status 集成来增强视觉效果&#xff0c;并且支持多种输出格式&#xff0c;如…

话题——计算机专业必看的几部电影

1. 计算机专业必看的几部电影 《黑客帝国》&#xff08;The Matrix&#xff09;&#xff1a;这部电影讲述了一个虚拟现实世界和现实世界之间的概念&#xff0c;对计算机编程和人工智能有着深刻的思考。它涉及在线/离线、递归、循环、矩阵等概念&#xff0c;挑战了观众对现实的…

TextCNN:文本分类卷积神经网络

模型原理 1、前言2、模型结构3、示例3.1、词向量层3.2、卷积层3.3、最大池化层3.4、Fully Connected层 4、总结 1、前言 TextCNN 来源于《Convolutional Neural Networks for Sentence Classification》发表于2014年&#xff0c;是一个经典的模型&#xff0c;Yoon Kim将卷积神…

功能测试用例,需要详细到什么程度?

这些天招了新人&#xff0c;新项目紧张的测试告一段落&#xff0c;我也开始为功能写用例。 一段时间不写了&#xff0c;写起来有点生疏&#xff0c;但是思路还很清楚。写到一半收到新人写完发过来的用例。 我一看就懵了&#xff0c;哥您这用例根本就是直接拷策划案啊&#xf…