目录
- 0 专栏介绍
- 1 控制点计算之插值
- 2 控制点计算之近似
- 3 仿真实现
- 3.1 ROS C++实现
- 3.2 Python实现
- 3.3 Matlab实现
0 专栏介绍
🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。
🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法
在曲线生成 | 图解B样条曲线生成原理(基本概念与节点生成算法)中,我们介绍了B样条曲线的基本概念,例如基函数的递推、曲线支撑性原理、节点生成公式等。本文进一步计算控制点计算和曲线生成原理。
1 控制点计算之插值
设B样条曲线为
P ( t ) = ∑ i = 0 n − 1 p i N i , k ( t ) \boldsymbol{P}\left( t \right) =\sum_{i=0}^{n-1}{\boldsymbol{p}_iN_{i,k}\left( t \right)} P(t)=i=0∑n−1piNi,k(t)
其中 p i \boldsymbol{p}_i pi是待求的控制节点。令参数向量满足其映射为数据点
D j = P ( u j ) = ∑ i = 0 n − 1 p i N i , k ( u j ) , j = 0 , 1 , ⋯ , n − 1 \boldsymbol{D}_j=\boldsymbol{P}\left( u_j \right) =\sum_{i=0}^{n-1}{\boldsymbol{p}_iN_{i,k}\left( u_j \right)}, j=0,1,\cdots ,n-1 Dj=P(uj)=i=0∑n−1piNi,k(uj),j=0,1,⋯,n−1
这里 N N N个数据点可求解出 N N N个控制点,所以 n = N n=N n=N,可以矩阵化为
D = N P \boldsymbol{D}=\boldsymbol{NP} D=NP
其中
D = [ d 0 T d 1 T ⋮ d n − 1 T ] , P = [ p 0 T p 1 T ⋮ p n − 1 T ] , N = [ N 0 , k ( u 0 ) N 1 , k ( u 0 ) ⋯ N n − 1 , k ( u 0 ) N 0 , k ( u 1 ) N 1 , k ( u 1 ) ⋯ N n − 1 , k ( u 1 ) ⋮ ⋮ ⋱ ⋮ N 0 , k ( u n − 1 ) N 1 , k ( u n − 1 ) ⋯ N n − 1 , k ( u n − 1 ) ] \boldsymbol{D}=\left[ \begin{array}{c} \boldsymbol{d}_{0}^{T}\\ \boldsymbol{d}_{1}^{T}\\ \vdots\\ \boldsymbol{d}_{n-1}^{T}\\\end{array} \right] , \boldsymbol{P}=\left[ \begin{array}{c} \boldsymbol{p}_{0}^{T}\\ \boldsymbol{p}_{1}^{T}\\ \vdots\\ \boldsymbol{p}_{n-1}^{T}\\\end{array} \right] , \boldsymbol{N}=\left[ \begin{matrix} N_{0,k}\left( u_0 \right)& N_{1,k}\left( u_0 \right)& \cdots& N_{n-1,k}\left( u_0 \right)\\ N_{0,k}\left( u_1 \right)& N_{1,k}\left( u_1 \right)& \cdots& N_{n-1,k}\left( u_1 \right)\\ \vdots& \vdots& \ddots& \vdots\\ N_{0,k}\left( u_{n-1} \right)& N_{1,k}\left( u_{n-1} \right)& \cdots& N_{n-1,k}\left( u_{n-1} \right)\\\end{matrix} \right] D= d0Td1T⋮dn−1T ,P= p0Tp1T⋮pn−1T ,N= N0,k(u0)N0,k(u1)⋮N0,k(un−1)N1,k(u0)N1,k(u1)⋮N1,k(un−1)⋯⋯⋱⋯Nn−1,k(u0)Nn−1,k(u1)⋮Nn−1,k(un−1)
求解该方程即可得到控制点。
2 控制点计算之近似
在插值问题中,插值曲线可能会在数据点间波动,而非紧密遵循数据多边形。为克服这个问题,可以放宽曲线必须穿过所有数据点的硬约束。除了第一个和最后一个数据点,曲线不必包含任何其他点,通过约束最小二乘误差来实现最优近似。考虑到节点向量中首末节点重复度为 k + 1 k+1 k+1时,B样条曲线穿过首末控制点,所以令 p 0 = d 0 \boldsymbol{p}_{0}=\boldsymbol{d}_{0} p0=d0, p n − 1 = d n − 1 \boldsymbol{p}_{n-1}=\boldsymbol{d}_{n-1} pn−1=dn−1,则
P ( t ) = N 0 , k ( t ) p 0 + ∑ i = 1 n − 2 p i N i , k ( t ) + N n − 1 , k ( t ) p n − 1 \boldsymbol{P}\left( t \right) =N_{0,k}\left( t \right) \boldsymbol{p}_0+\sum_{i=1}^{n-2}{\boldsymbol{p}_iN_{i,k}\left( t \right)}+N_{n-1,k}\left( t \right) \boldsymbol{p}_{n-1} P(t)=N0,k(t)p0+i=1∑n−2piNi,k(t)+Nn−1,k(t)pn−1
从而可以计算最小二乘误差
f ( p 1 , p 2 , ⋯ , p n − 2 ) = ∑ i = 1 n − 2 [ d i − P ( u i ) ] 2 = ∑ i = 1 n − 2 [ ( d i − N 0 , k ( u i ) p 0 − N n − 1 , k ( u i ) p n − 1 ) ⏟ q i − ∑ j = 1 n − 2 p j N j , k ( u i ) ] 2 = ∑ i = 1 n − 2 [ q i T q i − 2 q i ∑ j = 1 n − 2 p j N j , k ( u i ) + ∑ j = 1 n − 2 p j N j , k ( u i ) ∑ j = 1 n − 2 p j N j , k ( u i ) ] \begin{aligned}f\left( \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots ,\boldsymbol{p}_{n-2} \right) &=\sum_{i=1}^{n-2}{\left[ \boldsymbol{d}_i-\boldsymbol{P}\left( u_i \right) \right] ^2}\\&=\sum_{i=1}^{n-2}{\left[ \underset{{ \boldsymbol{q}_i}}{\underbrace{\left( \boldsymbol{d}_i-N_{0,k}\left( u_i \right) \boldsymbol{p}_0-N_{n-1,k}\left( u_i \right) \boldsymbol{p}_{n-1} \right) }}-\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)} \right] ^2}\\&=\sum_{i=1}^{n-2}{\left[ \boldsymbol{q}_{i}^{T}\boldsymbol{q}_i-2\boldsymbol{q}_i\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)}+\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)}\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)} \right]}\end{aligned} f(p1,p2,⋯,pn−2)=i=1∑n−2[di−P(ui)]2=i=1∑n−2 qi (di−N0,k(ui)p0−Nn−1,k(ui)pn−1)−j=1∑n−2pjNj,k(ui) 2=i=1∑n−2[qiTqi−2qij=1∑n−2pjNj,k(ui)+j=1∑n−2pjNj,k(ui)j=1∑n−2pjNj,k(ui)]
将误差函数对 p g ( g = 1 , 2 , ⋯ , n − 2 ) \boldsymbol{p}_g\left( g=1,2,\cdots ,n-2 \right) pg(g=1,2,⋯,n−2)求偏导,可得
∂ f ( p 1 , p 2 , ⋯ , p n − 2 ) ∂ p g = ∑ i = 1 n − 2 [ − 2 q i N g , k ( u i ) + 2 N g , k ( u i ) ∑ j = 1 n − 2 p j N j , k ( u i ) ] \frac{\partial f\left( \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots ,\boldsymbol{p}_{n-2} \right)}{\partial \boldsymbol{p}_g}=\sum_{i=1}^{n-2}{\left[ -2\boldsymbol{q}_iN_{g,k}\left( u_i \right) +2N_{g,k}\left( u_i \right) \sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)} \right]} ∂pg∂f(p1,p2,⋯,pn−2)=i=1∑n−2[−2qiNg,k(ui)+2Ng,k(ui)j=1∑n−2pjNj,k(ui)]
令 ∂ f ( p 1 , p 2 , ⋯ , p n − 2 ) / ∂ p g = 0 {{\partial f\left( \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots ,\boldsymbol{p}_{n-2} \right)}/{\partial \boldsymbol{p}_g}}=0 ∂f(p1,p2,⋯,pn−2)/∂pg=0可得
∑ i = 1 n − 2 [ ∑ j = 1 n − 2 N g , k ( u i ) N j , k ( u i ) ] p j = ∑ i = 1 n − 2 q i N g , k ( u i ) \sum_{i=1}^{n-2}{\left[ \sum_{j=1}^{n-2}{N_{g,k}\left( u_i \right) N_{j,k}\left( u_i \right)} \right] \boldsymbol{p}_j}=\sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{g,k}\left( u_i \right)} i=1∑n−2[j=1∑n−2Ng,k(ui)Nj,k(ui)]pj=i=1∑n−2qiNg,k(ui)
改写为矩阵形式
( N T N ) P = Q \left( \boldsymbol{N}^T\boldsymbol{N} \right) \boldsymbol{P}=\boldsymbol{Q} (NTN)P=Q
其中
P = [ p 1 T p 2 T ⋮ p n − 2 T ] , Q = [ ∑ i = 1 n − 2 q i N 1 , k ( u i ) ∑ i = 1 n − 2 q i N 2 , k ( u i ) ⋮ ∑ i = 1 n − 2 q i N n − 2 , k ( u i ) ] , N = [ N 1 , k ( u 1 ) N 2 , k ( u 1 ) ⋯ N n − 2 , k ( u 1 ) N 1 , k ( u 2 ) N 2 , k ( u 2 ) ⋯ N n − 2 , k ( u 2 ) ⋮ ⋮ ⋱ ⋮ N 1 , k ( u n − 2 ) N 2 , k ( u n − 2 ) ⋯ N n − 2 , k ( u n − 2 ) ] \boldsymbol{P}=\left[ \begin{array}{c} \boldsymbol{p}_{1}^{T}\\ \boldsymbol{p}_{2}^{T}\\ \vdots\\ \boldsymbol{p}_{n-2}^{T}\\\end{array} \right] , \boldsymbol{Q}=\left[ \begin{array}{c} \sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{1,k}\left( u_i \right)}\\ \sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{2,k}\left( u_i \right)}\\ \vdots\\ \sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{n-2,k}\left( u_i \right)}\\\end{array} \right] , \boldsymbol{N}=\left[ \begin{matrix} N_{1,k}\left( u_1 \right)& N_{2,k}\left( u_1 \right)& \cdots& N_{n-2,k}\left( u_1 \right)\\ N_{1,k}\left( u_2 \right)& N_{2,k}\left( u_2 \right)& \cdots& N_{n-2,k}\left( u_2 \right)\\ \vdots& \vdots& \ddots& \vdots\\ N_{1,k}\left( u_{n-2} \right)& N_{2,k}\left( u_{n-2} \right)& \cdots& N_{n-2,k}\left( u_{n-2} \right)\\\end{matrix} \right] P= p1Tp2T⋮pn−2T ,Q= ∑i=1n−2qiN1,k(ui)∑i=1n−2qiN2,k(ui)⋮∑i=1n−2qiNn−2,k(ui) ,N= N1,k(u1)N1,k(u2)⋮N1,k(un−2)N2,k(u1)N2,k(u2)⋮N2,k(un−2)⋯⋯⋱⋯Nn−2,k(u1)Nn−2,k(u2)⋮Nn−2,k(un−2)
求解该方程即可得到控制点。
3 仿真实现
3.1 ROS C++实现
核心代码如下所示:
Points2d BSpline::interpolation(const Points2d points, const std::vector<double> param, const std::vector<double> knot)
{
size_t n = points.size();
Eigen::MatrixXd N = Eigen::MatrixXd::Zero(n, n);
Eigen::MatrixXd D(n, 2);
for (size_t i = 0; i < n; i++)
for (size_t j = 0; j < n; j++)
N(i, j) = baseFunction(j, order_, param[i], knot);
N(n - 1, n - 1) = 1;
for (size_t i = 0; i < n; i++)
{
D(i, 0) = points[i].first;
D(i, 1) = points[i].second;
}
Eigen::MatrixXd C = N.inverse() * D;
std::vector<std::pair<double, double>> control_points(n);
for (size_t i = 0; i < n; i++)
control_points[i] = { C(i, 0), C(i, 1) };
return control_points;
}
3.2 Python实现
核心代码如下所示:
def approximation(self, points: list, param: list, knot: list):
n = len(points)
D = np.array(points)
# heuristically setting the number of control points
h = n - 1
N = np.zeros((n, h))
for i in range(n):
for j in range(h):
N[i][j] = self.baseFunction(j, self.k, param[i], knot)
N_ = N[1 : n - 1, 1 : h - 1]
qk = np.zeros((n - 2, 2))
for i in range(1, n - 1):
qk[i - 1] = D[i, :] - N[i][0] * D[0, :] - N[i][h - 1] * D[-1, :]
Q = N_.T @ qk
P = np.linalg.inv(N_.T @ N_) @ Q
P = np.insert(P, 0, D[0, :], axis=0)
P = np.insert(P, len(P), D[-1, :], axis=0)
return P
3.3 Matlab实现
核心代码如下所示:
function points = generation(knot, control_pts, param)
n = ceil(1.0 / param.step);
t = (0 : n - 1) / (n - 1);
[m, ~] = size(control_pts);
N = zeros(n, m);
for i=1:n
for j=1:m
N(i, j) = baseFunction(j, param.order, t(i), knot);
end
end
N(n, m) = 1.0;
points = N * control_pts;
end
完整工程代码请联系下方博主名片获取
🔥 更多精彩专栏:
- 《ROS从入门到精通》
- 《Pytorch深度学习实战》
- 《机器学习强基计划》
- 《运动规划实战精讲》
- …