AIGC专栏9——Scalable Diffusion Models with Transformers (DiT)结构解析

AIGC专栏9——Scalable Diffusion Models with Transformers (DiT)结构解析

  • 学习前言
  • 源码下载地址
  • 网络构建
    • 一、什么是Diffusion Transformer (DiT)
    • 二、DiT的组成
    • 三、生成流程
      • 1、采样流程
        • a、生成初始噪声
        • b、对噪声进行N次采样
        • c、单次采样解析
          • I、预测噪声
          • II、施加噪声
        • d、预测噪声过程中的网络结构解析
          • i、adaLN-Zero结构解析
          • ii、patch分块处理
          • iii、Transformer特征提取
          • iv、上采样
      • 3、隐空间解码生成图片
  • 类别到图像预测过程代码

学习前言

近期Sora大火,它底层是Diffusion Transformer,本质上是使用Transformer结构代替原本的Unet进行噪声预测,好处是统一了文本生成与视频生成的结构。这训练优化和预测优化而言是个好事,因为只需要优化一种结构就够了。虽然觉得OpenAI是大力出奇迹,但还是得学!
在这里插入图片描述

源码下载地址

https://github.com/bubbliiiing/DiT-pytorch

喜欢的可以点个star噢。

网络构建

一、什么是Diffusion Transformer (DiT)

DiT基于扩散模型,所以不免包含不断去噪的过程,如果是图生图的话,还有不断加噪的过程,此时离不开DDPM那张老图,如下:
在这里插入图片描述
DiT相比于DDPM,使用了更快的采样器,也使用了更大的分辨率,与Stable Diffusion一样使用了隐空间的扩散,但可能更偏研究性质一些,没有使用非常大的数据集进行预训练,只使用了imagenet进行预训练。

与Stable Diffusion不同的是,DiT的网络结构完全由Transformer组成,没有Unet中大量的上下采样,结构更为简单清晰。

本文主要是解析一下整个DiT模型的结构组成,并简单一次扩散,多次扩散的流程。本文代码来自于Diffusers,Diffusers代码较为简单清晰,是一个非常好的仓库,学习起来也比较快。

二、DiT的组成

DiT由三大部分组成。
1、Sampler采样器。
2、Variational Autoencoder (VAE) 变分自编码器。
3、UNet 主网络,噪声预测器。

每一部分都很重要,由于DiT的官方版本并没有在 大规模文本图片 的 数据集上训练,只使用了imagenet进行预训练。所以它并没有文本输入,而是以标签作为输入。因此,DiT只能按照类别进行图片生成,可以生成imagenet中的1000类

三、生成流程

在这里插入图片描述
生成流程分为两个部分:
1、生成正态分布向量后进行若干次采样。
2、进行解码。

由于DiT只能按照类别进行图片生成,所以无需对文本进行编码,直接传入类别的对应的id(0-1000)即可指定类别。

# --------------------------------- #
#   前处理
# --------------------------------- #
# 生成latent
latents = randn_tensor(
    shape=(batch_size, latent_channels, latent_size, latent_size),
    generator=generator,
    device=self._execution_device,
    dtype=self.transformer.dtype,
)
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1 else latents

# 将输入的label 与 null label进行concat,null label是负向提示类。
class_labels = torch.tensor(class_labels, device=self._execution_device).reshape(-1)
class_null = torch.tensor([1000] * batch_size, device=self._execution_device)
class_labels_input = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels

# 设置生成的步数
self.scheduler.set_timesteps(num_inference_steps)

# --------------------------------- #
#   扩散生成
# --------------------------------- #
# 开始N步扩散的循环
for t in self.progress_bar(self.scheduler.timesteps):
    if guidance_scale > 1:
        half = latent_model_input[: len(latent_model_input) // 2]
        latent_model_input = torch.cat([half, half], dim=0)
    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
    
    # 处理timesteps
    timesteps = t
    if not torch.is_tensor(timesteps):
        is_mps = latent_model_input.device.type == "mps"
        if isinstance(timesteps, float):
            dtype = torch.float32 if is_mps else torch.float64
        else:
            dtype = torch.int32 if is_mps else torch.int64
        timesteps = torch.tensor([timesteps], dtype=dtype, device=latent_model_input.device)
    elif len(timesteps.shape) == 0:
        timesteps = timesteps[None].to(latent_model_input.device)
    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
    timesteps = timesteps.expand(latent_model_input.shape[0])

    # 将隐含层特征、时间步和种类输入传入到transformers中
    noise_pred = self.transformer(
        latent_model_input, timestep=timesteps, class_labels=class_labels_input
    ).sample

    # perform guidance
    if guidance_scale > 1:
        # 在通道上做分割,取出生图部分的通道
        eps, rest = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)

        half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)

        noise_pred = torch.cat([eps, rest], dim=1)

    # 对结果进行分割,取出生图部分的通道
    if self.transformer.config.out_channels // 2 == latent_channels:
        model_output, _ = torch.split(noise_pred, latent_channels, dim=1)
    else:
        model_output = noise_pred

    # 通过采样器将这一步噪声施加到隐含层
    latent_model_input = self.scheduler.step(model_output, t, latent_model_input).prev_sample

if guidance_scale > 1:
    latents, _ = latent_model_input.chunk(2, dim=0)
else:
    latents = latent_model_input

# --------------------------------- #
#   后处理
# --------------------------------- #
# 通过vae进行解码
latents = 1 / self.vae.config.scaling_factor * latents
samples = self.vae.decode(latents).sample

samples = (samples / 2 + 0.5).clamp(0, 1)

# 转化为float32类别
samples = samples.cpu().permute(0, 2, 3, 1).float().numpy()

1、采样流程

a、生成初始噪声

在这里插入图片描述

在生成初始噪声前介绍一下VAE,VAE是变分自编码器,可以将输入图片进行编码,一个高宽原本为256x256x3的图片在使用VAE编码后会变成32x32x4这个4是人为设定的,不必纠结为什么不是3。这个时候我们就使用一个相对简单的矩阵代替原有的256x256x3的图片了,传输与存储成本就很低。在实际要去看的时候,可以对32x32x4的矩阵进行解码,获得256x256x3的图片。

因此,如果 我们要生成一个256x256x3的图片,那么我们只需要初始化一个32x32x4的隐向量,在隐空间进行扩散即可。在隐空间扩散好后,再使用解码器就可以生成256x256x3的图像。

在代码中,我们确实是这么做的,初始噪声的生成函数为randn_tensor,是diffusers自带的一个函数,尽管它写的很长,但实际生成初始噪声的代码只有一行:
在这里插入图片描述

latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)

代码本来位于diffusers的工具文件中,为了方便查看,我将其复制到nets/pipeline.py中。

b、对噪声进行N次采样

在这里插入图片描述

既然Stable Diffusion是一个不断扩散的过程,那么少不了不断的去噪声,那么怎么去噪声便是一个问题。

在上一步中,我们已经获得了一个latents,它是一个符合正态分布的向量,我们便从它开始去噪声。

在代码中,我们有一个对时间步的循环,会不断的将隐含层向量输入到transformers中进行噪声预测,并且一步一步的去噪。

# --------------------------------- #
#   扩散生成
# --------------------------------- #
# 开始N步扩散的循环
for t in self.progress_bar(self.scheduler.timesteps):
    if guidance_scale > 1:
        half = latent_model_input[: len(latent_model_input) // 2]
        latent_model_input = torch.cat([half, half], dim=0)
    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
    
    # 处理timesteps
    timesteps = t
    if not torch.is_tensor(timesteps):
        is_mps = latent_model_input.device.type == "mps"
        if isinstance(timesteps, float):
            dtype = torch.float32 if is_mps else torch.float64
        else:
            dtype = torch.int32 if is_mps else torch.int64
        timesteps = torch.tensor([timesteps], dtype=dtype, device=latent_model_input.device)
    elif len(timesteps.shape) == 0:
        timesteps = timesteps[None].to(latent_model_input.device)
    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
    timesteps = timesteps.expand(latent_model_input.shape[0])

    # 将隐含层特征、时间步和种类输入传入到transformers中
    noise_pred = self.transformer(
        latent_model_input, timestep=timesteps, class_labels=class_labels_input
    ).sample

    # perform guidance
    if guidance_scale > 1:
        # 在通道上做分割,取出生图部分的通道
        eps, rest = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)

        half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)

        noise_pred = torch.cat([eps, rest], dim=1)

    # 对结果进行分割,取出生图部分的通道
    if self.transformer.config.out_channels // 2 == latent_channels:
        model_output, _ = torch.split(noise_pred, latent_channels, dim=1)
    else:
        model_output = noise_pred

    # 通过采样器将这一步噪声施加到隐含层
    latent_model_input = self.scheduler.step(model_output, t, latent_model_input).prev_sample
c、单次采样解析
I、预测噪声

在进行单次采样前,需要首先判断是否有负向提示类,如果有,我们需要同时处理负向提示类,否则仅仅需要处理正向提示类。实际使用的时候一般都有负向提示类(效果会好一些),所以默认进入对应的处理过程。

在处理负向提示类时,我们对输入进来的隐向量进行复制,一个属于正向提示类(0-999),一个属于负向提示类(1000)。它们是在batch_size维度进行堆叠,二者不会互相影响。然后我们将正向提示类负向提示类(1000)也在batch_size维度堆叠。代码中,如果guidance_scale>1则代表需要负向提示类

# --------------------------------- #
#   前处理
# --------------------------------- #
# 生成latent
latents = randn_tensor(
    shape=(batch_size, latent_channels, latent_size, latent_size),
    generator=generator,
    device=self._execution_device,
    dtype=self.transformer.dtype,
)
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1 else latents

# 将输入的label 与 null label进行concat,null label是负向提示类。
class_labels = torch.tensor(class_labels, device=self._execution_device).reshape(-1)
class_null = torch.tensor([1000] * batch_size, device=self._execution_device)
class_labels_input = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels

堆叠完后,我们将隐向量、步数和类别条件一起传入网络中,将结果在bs维度进行使用chunk进行分割。

因为我们在堆叠时,正向提示类放在了前面。因此分割好后,前半部分cond_eps属于利用正向提示类得到的,后半部分uncond_eps属于利用负向提示类得到的,我们本质上应该扩大正向提示类的影响,远离负向提示类的影响。因此,我们使用cond_eps-uncond_eps计算二者的距离,使用scale扩大二者的距离。在uncond_eps基础上,得到最后的隐向量。

# 堆叠完后,隐向量、步数和prompt条件一起传入网络中,将结果在bs维度进行使用chunk进行分割
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

此时获得的eps就是通过隐向量和提示类共同获得的预测噪声啦。

II、施加噪声

在获得噪声后,我们还要将获得的新噪声,按照一定的比例添加到原来的原始噪声上。

diffusers的代码并没有将施加噪声的代码写在明面上,而是使用采样器的step方法替代,采样流程与DDIM一致,因此直接参考DDIM公式即可,此前,在Stable Diffusion相关博文中写到过DDIM公式,可以参考对应博文了解一下。

latent_model_input = self.scheduler.step(model_output, t, latent_model_input).prev_sample
d、预测噪声过程中的网络结构解析

这个部分是DiT与Stable Diffusion最大的不同,DiT将网络结构从Unet转换成了Transformers,

i、adaLN-Zero结构解析

Transformers主要做的工作是结合 时间步t 和 类别 计算这一时刻的噪声。此处的Transformers结构与VIT中的Transformers基本一致,但为了融合时间步t和类别,新增了一个Embed层和adaLN-Zero结构。

  • Embed层主要是将输入进来的timestep和label进行向量化。
  • adaLN-Zero则是通过全连接对向量化后的timestep和label进行映射,然后分为6个部分,分别作用于DiT的不同阶段用于缩放(scale)、偏置(shift、bias)与门函数(gate)。

如下是Embed层和adaLN-Zero结构的代码与示意图:

class CombinedTimestepLabelEmbeddings(nn.Module):
    def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)

    def forward(self, timestep, class_labels, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        class_labels = self.class_embedder(class_labels)  # (N, D)

        conditioning = timesteps_emb + class_labels  # (N, D)

        return conditioning

class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp

在这里插入图片描述

ii、patch分块处理

在代码中,我们使用一个PatchEmbed类对输入的隐含层向量进行分块,该操作便是VIT中的patchc操作,通过卷积进行类似于下采样的操作,可以减少计算量。
在这里插入图片描述
如下为patch分块处理的代码,核心是使用步长和卷积核大小一样的Conv2d模块进行处理,由于步长和卷积核大小一致,每个图片区域的特征提取过程就不会有重叠

我们初始化生成的隐含层向量为32x32x4。在DiT-XL-2中,patch处理的步长和卷积核大小为2,通道为1152,在处理完成后,特征的通道上升,高宽被压缩,此时我们获得一个16x16x1152的新特征,然后我们将其在长宽上进行平铺,获得一个256x1152的向量,并且加上位置信息。

class PatchEmbed(nn.Module):
    """2D Image to Patch Embedding"""

    def __init__(
        self,
        height=224,
        width=224,
        patch_size=16,
        in_channels=3,
        embed_dim=768,
        layer_norm=False,
        flatten=True,
        bias=True,
    ):
        super().__init__()

        num_patches = (height // patch_size) * (width // patch_size)
        self.flatten = flatten
        self.layer_norm = layer_norm

        self.proj = nn.Conv2d(
            in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
        )
        if layer_norm:
            self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
        else:
            self.norm = None

        pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5))
        self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)

    def forward(self, latent):
        latent = self.proj(latent)
        if self.flatten:
            latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        if self.layer_norm:
            latent = self.norm(latent)
        return latent + self.pos_embed
iii、Transformer特征提取

此后,我们将向量传入Transformer中进行特征提取,对应图中的DiT Block。

256x1152的特征会通过图中红框的部分,而时间步t 和 类别会通过途中绿框的部分。

红框部分的结构,除了缩放(scale)、偏置(shift、bias)与门函数(gate,对应图中的α,代码中是gate但图中写scale)外,其它部分与VIT一模一样,可参考博文VIT结构解析进行了解,主要工作的模块是Self-Attention和Pointwise Feedforward(MLP)。这两个模块的输入和输出均为256x1152的特征。

而缩放(scale)、偏置(shift、bias)与门函数(gate)分别对应了图中的γ、β和α。通过adaLN-Zero结构获得,γ、β分别在 Self-Attention和Pointwise Feedforward 的处理前 进行特征的 缩放与偏置 ,而Pointwise Feedforward则在 Self-Attention和Pointwise Feedforward 的处理后 进行特征的 缩放。在代码中我添加了中文注释,方便读者区分添加缩放、偏置和门函数的位置

DiT Block的输入和输出特征均为256x1152。
在这里插入图片描述

class BasicTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
    ):
        super().__init__()
        .......

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
    ):
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 1. Self-Attention
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            # 在norm1中,已经进行了输入特征的缩放与偏置
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
        # 在self attention后,再次进行了特征的缩放(gate)
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = attn_output + hidden_states

        # 2. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                **cross_attention_kwargs,
            )
            hidden_states = attn_output + hidden_states

        # 3. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        # 在mlp前,进行了输入特征的缩放与偏置
        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
                raise ValueError(
                    f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
                )

            num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
            ff_output = torch.cat(
                [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
                dim=self._chunk_dim,
            )
        else:
            ff_output = self.ff(norm_hidden_states)

        # 在mlp后,再次进行了特征的缩放(gate)
        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states

        return hidden_states
iv、上采样

虽然这个部分学名可能不叫上采样,但是我觉得用上采样来描述它还是比较合适的,因为我们前面做过patch分块处理,所以隐含层的高宽被压缩,而这一步,则是将隐含层的高宽再还原回去。

在这里我们会对256x1152进行两次全连接+一次LayerNorm,两次全连接的神经元个数分别为2304和patch_size * patch_size * out_channels。第一次全连接目的是扩宽通道数,第二次全链接则是还原高宽。两次全连接后,在DiT-XL-2中,out_channels为8(8可拆分为4 + 4,前面的4用于直接预测噪声,后面的4用于根据 x t − 1 x_{t-1} xt1均值和方差计算KL散度),特征层的shape从256x1152变为256x32。

然后我们会进行一系列shape变换,首先将256x1152变为16x16x2x2x8,然后进行转置变为8x16x2x16x2,然后还原高宽变为8x32x32。此时上采样结束。该部分对应了图中的Linear And Reshape。
在这里插入图片描述

上采样代码如下所示:

# 3. Output
conditioning = self.transformer_blocks[0].norm1.emb(
    timestep, class_labels, hidden_dtype=hidden_states.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)

# unpatchify
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
    shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
    shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)

3、隐空间解码生成图片

通过上述步骤,已经可以多次采样获得结果,然后我们便可以通过隐空间解码生成图片。

隐空间解码生成图片的过程非常简单,将上文多次采样后的结果,使用vae的decode方法即可生成图片。

# --------------------------------- #
#   后处理
# --------------------------------- #
# 通过vae进行解码
latents = 1 / self.vae.config.scaling_factor * latents
samples = self.vae.decode(latents).sample

samples = (samples / 2 + 0.5).clamp(0, 1)

# 转化为float32类别
samples = samples.cpu().permute(0, 2, 3, 1).float().numpy()

类别到图像预测过程代码

整体预测代码如下:


import torch
import json
import os
from diffusers import DPMSolverMultistepScheduler, AutoencoderKL

from nets.transformer_2d import Transformer2DModel
from nets.pipeline import DiTPipeline

# 模型路径
model_path = "model_data/DiT-XL-2-256"

# 初始化DiT的各个组件
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler")
transformer = Transformer2DModel.from_pretrained(model_path, subfolder="transformer")
vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae")
id2label = json.load(open(os.path.join(model_path, "model_index.json"), "r"))['id2label']

# 初始化DiT的Pipeline
pipe = DiTPipeline(scheduler=scheduler, transformer=transformer, vae=vae, id2label=id2label)
pipe = pipe.to("cuda")

# imagenet种类 对应的 名称
words = ["white shark", "umbrella"]
# 获得imagenet对应的ids
class_ids = pipe.get_label_ids(words)
# 设置seed
generator = torch.manual_seed(42)

# pipeline前传
output = pipe(class_labels=class_ids, num_inference_steps=25, generator=generator)

# 保存图片
for index, image in enumerate(output.images):
    image.save(f"output-{index}.png")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/409729.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring的另一大的特征:AOP

目录 AOP (Aspect Oriented Programming)AOP 入门案例(注解版)AOP 工作流程——代理AOP切入点表达式AOP 通知类型AOP通知获取数据获取切入点方法的参数获取切入点方法返回值获取切入点方法运行异常信息 百度网盘分享链接输入密码数…

【Linux基础】Linux自动化构建工具make/makefile

背景 会不会写makefile,从一个侧面说明了一个人是否具备完成大型工程的能力一个工程中的源文件不计数,其按类型、功能、模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要先编译,哪些文件需要后…

性格正直的人适合什么职业?

有信仰,有责任,有骨气,有尊严,这应该是大多数人对正直的人的理解,他们的心中有信仰,肩上有责任,灵魂有骨气,头上有尊严,不管在什么时候都能够坚守道德准则,不…

【文生视频】Diffusion Transformer:OpenAI Sora 原理、Stable Diffusion 3 同源技术

文生视频 Diffusion Transformer:Sora 核心架构、Stable Diffusion 3 同源技术 提出背景变换器的引入Diffusion Transformer (DiT)架构Diffusion Transformer (DiT)总结 OpenAI Sora 设计思路阶段1: 数据准备和预处理阶段2: 架构设计阶段3: 输入数据的结构化阶段4: …

蓝桥杯算法赛 第 6 场 小白入门赛 解题报告 | 珂学家 | 简单场 + 元宵节日快乐

前言 整体评价 因为适逢元宵节,所以这场以娱乐为主。 A. 元宵节快乐 题型: 签到 节日快乐,出题人也说出来自己的心愿, 祝大家AK快乐! import java.util.Scanner;public class Main {public static void main(String[] args) {System.out.println(&qu…

信息抽取(UIE):使用自然语言处理技术提升证券投资决策效率

一、引言 在当今快速变化的证券市场中,信息的价值不言而喻。作为一名资深项目经理,我曾领导一个关键项目,旨在通过先进的信息抽取技术,从海量的文本数据中提取关键事件,如企业并购、新产品发布以及政策环境的变动。这些…

学会字符转换

字符转换 题目描述:解法思路:解法代码:运行结果: 题目描述: 输入⼀一个字符串,将字符串中大写字母全部转为小写字母,小写字母转成大写字母,其他字符保持不变。注:字符串…

typescript使用解构传参

看下面这个函数 interface Student {id: number;name: string;class: string;sex: string;}function matriculation(student: Student) {//...}我们要调用它,就需要传递一个实现了Student约束的对象进去 interface Student {id: number;name: string;class: string;sex: string…

音视频数字化(数字与模拟-电视)

上一篇文章【音视频数字化(数字与模拟-音频广播)】谈了音频的广播,这次我们聊电视系统,这是音频+视频的采集、传输、接收系统,相对比较复杂。 音频系统的广播是将声音转为电信号,再调制后发射出去,利用“共振”原理,收音机接收后解调,将音频信号还原再推动扬声器,我…

Liunx--nginx负载均衡--前后端分离项目部署

一.nginx简介 Nginx是一个高性能的HTTP和反向代理服务器,它以其轻量级、占用资源少、并发能力强而广受欢迎。 详细介绍 开发背景与特点:Nginx由俄罗斯人Igor Sysoev开发,它是一个自由的、开源的软件。Nginx设计上注重性能和效率,能…

数据库安全性与完整性设计

文章标签集合[数据库安全,数据敏感,通信安全,MD5,盐加密] 1 系统设计 1.1设计目标 (1)确定系统中需要保护的敏感数据和通信内容; (2)设计合适的签名、加密和解密算法; (3)实现…

docker-compose 搭建laravel环境

laravel环境包含nginx,mysql,php7.4,redis 一、安装好docker后pull镜像 1.nginx镜像 docker pull nginx:latest单独启动容器 docker run --name nginx -p 80:80 -d nginx 2.php镜像 docker pull php:7.4-fpm3.mysql镜像 docker pull mysql:5.74.redis镜像 docker pull r…

Mysql5.7主从复制搭建

注意不适用Mysql8 Docker搭建Mysql主从复制 docker run -p 3307:3306 --name mysql-master \ -v /usr/local/develop/mysql-master/log:/var/log/mysql \ -v /usr/local/develop/mysql-master/data:/var/lib/mysql \ -v /usr/local/develop/mysql-master/conf:/etc/mysql/con…

基于相位的运动放大:如何检测和放大难以察觉的运动(02/2)

目录 一、说明二、算法三、准备处理四、高斯核五、带通滤波器六、复杂的可操纵金字塔七、最终预处理步骤八、执行处理九、金字塔的倒塌十、可视化结果十一、结论 一、说明 日常物体会产生人眼无法察觉的微妙运动。在视频中,这些运动的幅度小于一个像素,…

记录一些mac电脑重装mysql和pgsql的坑

为什么要重装,是想在mac电脑 创建data目录…同事误操作,导致电脑重启不了.然后重装系统后,.就连不上数据库了.mysql和pgsql两个都连不上.网上也查了很多资料.实在不行,.就重装了… 重装mysql. 1.官网下载 https://www.mysql.com/downloads/ 滑到最下面 选择 选择对应的芯片版本…

密码学及其应用(应用篇15)——0/1背包问题

1 问题背景 背包问题是一个经典的优化问题,在计算机科学和运筹学中有着广泛的应用。具体到你提到的这个问题,它是背包问题中的一个特例,通常被称为0/1背包问题。这里,我们有一系列的正整数 ,以及一个正整数&#xff0c…

【Linux】--- 详解Linux软件包管理器yum和编辑器vim

目录 一、Linux软件包管理器 - yum1.1 yum和软件包是什么1.2 Linux系统(Centos)的生态1.3 yum相关操作1.4 yum本地配置 二、Linux编辑器 - vim使用2.1 vim的基本概念2.2 vim命令模式命令集2.3 vim末行模式命令集2.4 关于vim的几个相关问题 一、Linux软件包管理器 - yum 1.1 yu…

Open3D 点云法向量计算与可视化 (25)

Open3D 点云法向量计算与可视化 (25) 一、算法原理二、算法实现三、可视化显示和长度调节一、算法原理 通常计算点云的法向量可以使用以下两种常见的方法: 最小二乘法(Least Squares Method):该方法通过拟合局部表面的平面来计算法向量。对于给定点周围的邻域,可以通过…

云尚办公-0.3.0

5. controller层 import pers.beiluo.yunshangoffice.model.system.SysRole; import pers.beiluo.yunshangoffice.service.SysRoleService;import java.util.List;//RestController:1.该类是控制器;2.方法返回值会被写进响应报文的报文体,而…

分布式架构(分布式ID+分布式事务)

分布式架构 分布式事务产生的场景: 跨JVM进程产生的分布式事务 单体系统访问多个数据库实例 多服务访问同一个数据库实例 CAP理论 C:一致性,指写操作后的读操作可以读取到最新的数据状态,当数据分布在多个节点上&#xff0…