Excel的中高级用法

单元格格式,根据数值的正负分配不同的颜色和↑ ↓

        根据数值正负分配颜色

        

2
-7

[蓝色]#,##0;[红色]-#,##0

        分配颜色的基础上,根据正负加↑和↓

2↑
-7↓

                 其实就是在上面颜色的代码基础上加个 向上的符号↑,或向下的符号↓

[蓝色]#,##0↑;[红色]-#,##0↓

        只保留箭头,不要颜色

2↑
-7↓

#,##0↑;#,##0↓

                保留占位符  #,##0  后面加个↑或↓ 。为什么要加这个占位符呢?这个占位符表示的就是-7和2,如果不写占位符,只写↑和↓,那么结果就不会有数字,就会变成下面这样只有↑和↓

                 

IF函数

        运算结果

        公式

=IF(SUM(AK122:AM122),SUM(AK122:AM122),"")

IF函数是Excel中的逻辑函数,它根据指定的条件进行判断,并返回相应的结果。IF函数的语法如下:

IF(condition, value_if_true, value_if_false)

其中,参数的含义如下:

  • condition:要测试的条件或表达式。
  • value_if_true:如果条件为真(即满足或不满足),则返回的值。
  • value_if_false:如果条件为假(即不满足),则返回的值。
=IF(SUM(AK122:AM122),SUM(AK122:AM122),"")

如果 condition  SUM(AK122:AM122)  只要不是0(那就是True),去取SUM(AK122:AM122)作为整个函数的输出值。

如果 condition  SUM(AK122:AM122)  的值是0(那就是False),就取""  一个空的字符串,作为整个函数的输出值。

防止没有数据的情况下,把流量统计成数字0

我想知道是什么样的操作可以让390行的Excel表只显示381行以后的数据(文件位置:远程桌面的上下线.xlsx)

Excel给一列中所有为空的行都填上“汇总”两个字我现在已经用Ctril+G选中了所有的空行,如何一次性填充所有的空行为“汇总”二字?

如果您已经使用 Ctrl + G 快捷键并通过“定位条件”选中了所有空行中的单元格,接下来可以一次性填充这些单元格为“汇总”二字。请按照以下步骤操作:

  1. 确保选中了所有空单元格
    • 如果您是通过“定位条件”选中了空值,那么所有空单元格应该已经被选中。
    • 如果有些单元格没有被选中,您可以手动点击并扩展选择范围,或者使用 Ctrl + 点击 来选中额外的单元格。
  2. 输入“汇总”二字
    • 直接在任意一个选中的空单元格中输入“汇总”。
  3. 使用 Ctrl + Enter 填充所有选中单元格
    • 在输入“汇总”后,不要直接按 Enter 键,因为这样会只在当前单元格中填充内容。
    • 相反,按下 Ctrl + Enter 组合键。这将确保“汇总”二字被填充到所有选中的单元格中。
  4. 验证填充结果
    • 检查您的数据列,确保所有之前选中的空单元格现在都填充了“汇总”二字。

如果您按照这些步骤操作后,仍然发现有些单元格没有被填充,可能是因为有些单元格的格式问题或者它们并不是真正的空单元格(例如,它们可能包含空格或其他不可见字符)。在这种情况下,您可以再次使用“定位条件”来确保只选中了真正的空单元格,并重复上述填充步骤。

请注意,在进行此类批量操作时,务必先备份您的工作表,以防意外情况发生。

我在Excel表中遇到这个问题,A1写着2022-01-01,A1向下到A15都是空的,A16写着2022-01-02,A17-A27是空的,A28写着2022-01-03, A29-A40是空的。 后面还有上千行的数据都是类似情况,其中一行是有日期的,这一行以后十几行都是空的,我希望这十几行都填充上之前那一行?除了手动Ctrl+D填充,还有其他更便捷的方式吗?

🔺1、打开Excel文件后,选中要填充的空白单元格和周围的数据。


🔺2、按快捷键【Ctrl+G】或【F5】调出定位窗口,点击【定位条件】。


🔺3、勾选【空值(K)】,点击【确定】,将所有空白单元格全部选中,第一个空值背景色是白色,表示可以编辑。


🔺4、在第一个空值中输入【=】,点击上一行的单元格即【A2】,如图所示。


🔺5、按快捷键【Ctrl+Enter】,如图所示:已全部填充。



💥注意:选中空白表格时千万不要选中整列,否则整列都会执行填充功能,有可能导致excel卡住或闪退。

mstsc是英文Microsoft Terminal Services Client的缩写,中文意思是微软终端服务客户端。它是一个Windows系统内置的工具,用于远程连接到其他计算机或服务器。当你按下Win+R组合键并输入mstsc时,系统会打开远程桌面连接工具,让你能够连接到远程计算机。

手机中的DCIM是英文digital camera in memory的简写,中文意思是数字相机图像。这个文件夹通常用于存放数码相机拍摄的照片和视频,因此命名为DCIM。

常见的SQL有MySQL、Spark、Hive、Flink,请问什么情境下会使用哪一种数据库呢?

MySQL:

        读写速度快

        数据量GB到TB级别的数据用MySQL, 数据量数十TB或PB级别,一般用Hive

        备注:不是只有Spark和Hive可以在集群上运行。MySQL 可以在集群上运行,也可以单机运行

Spark:

        需要处理大规模数据集

        特别是那些不能放入内存的数据集时

        可以用于批处理、流处理、机器学习和图处理等。

        高度优化,可以在集群上运行,支持多种数据源.就是你

Hive:

        如果你们公司的数据已经存储在 Hadoop Distributed File System分布式文件系统(HDFS)中的数据。Hive 提供了一个类似 SQL 的查询语言(HQL)(Hive SQL),使得数据分析师可以更容易地查询和分析大数据。

        Hive不适用于实时分析或低延迟场景,因为它的设计目的是为了批处理和大数据处理。如果你对实时性和低延迟有要求高且数据体量较大TB到PB级别,你应该用Flink。如果你对实时性和低延迟有要求高且数据体量是GB到TB级别,你应该用MySQL。

        Hive真正的优势在于批处理。

                什么是“批处理”?

批处理就是MapReduce,先分工,再汇总

批处理是一种数据处理方式,它将大量的数据分成小批次进行处理。每个批次的数据被单独处理,处理完成后将结果进行整合,得到最终的结果。在大数据处理中,批处理通常用于处理大规模数据集,因为这种方式可以充分利用计算资源,提高数据处理效率。

举个例子,假设我们要处理一个包含数百万条记录的大型数据集,需要进行数据分析、数据清洗和汇总等操作。如果我们使用传统的数据处理方式,可能会花费很长时间才能完成整个数据集的处理。而采用批处理方式,我们可以将整个数据集分成若干个小批次,每个批次的数据单独进行处理。这样,我们可以同时处理多个批次的数据,从而大大提高了数据处理效率。

在实际应用中,批处理通常用于数据仓库、ETL(提取、转换、加载)等场景。例如,在数据仓库中,数据从源系统经过ETL过程被加载到数据仓库中,这个过程可以采用批处理方式进行数据处理,以提高效率。

总之,批处理是一种高效的数据处理方式,尤其适用于大规模数据集的处理。通过将数据分成小批次进行处理,可以充分利用计算资源,提高数据处理效率。

        Hive的性能较差,查询速度很慢,远远比MySQL、Spark、慢

        Hive的速度之所以慢,是因为下面这些原因

一部分是因为Hive是在对HDFS上的这些硬盘中的文件进行汇总,需要进行频繁的磁盘读写操作。但是Spark呢使用了一种基于内存的计算模型。Spark将数据缓存在内存中,避免了频繁的磁盘读写操作,从而提高了计算速度。因此,对于需要处理大量数据、要求高性能的场景,例如实时数据分析、机器学习、流数据处理等,Spark可能是一个更好的选择。

        实际上,Hive的性能问题更多是由于其计算模型执行引擎的设计。

        Hive使用了一种基于MapReduce的计算模型,这种模型在处理大数据时相对较慢,因为它需要在多个阶段进行数据分区、排序和聚合等操作。这些操作需要大量的计算资源和时间,导致Hive的查询速度相对较慢。

        另外,Hive的执行引擎也存在一些性能瓶颈。Hive的查询计划需要通过一个中央协调器来执行,这会导致查询执行过程中的瓶颈和延迟。相比之下,一些其他的大数据处理工具(如Spark和Flink)采用了更为高效的计算模型和执行引擎,可以更快地处理数据。

Spark和Flink的执行引擎的优越性体现在下面几点

        Spark的执行引擎称为Spark Engine,它采用了基于RDD的计算模型,可以进行弹性分布式计算。Spark Engine可以将多个操作转化为DAG图,按照最优的执行方式进行计算,从而减少了数据的读写、Shuffle等操作,提高了处理效率

        Flink最大的特点是批流一体。在Flink中,所有的数据都被视为流进行处理,无论是批数据还是流数据,都可以在同一个Flink集群中进行处理。Flink的执行引擎称为Flink Engine,它是一个流处理和批处理的统一计算框架。Flink Engine支持有界和无界数据的流处理,可以对数据流进行实时处理和状态管理。与Spark相比,Flink在处理流数据时具有更好的实时性和低延迟性

        从实时性上来说,Flink要优于Spark。

Flink:

        需要实时数据处理和分析的应用。Flink 提供流处理stream和批处理batch,对于低延迟的场景非常适合。对实时性要求很高。

        常用到Flink的行业和公司有下面这些。

        推荐系统:电商领域的实时数据分析和推荐系统也是 Flink 的应用场景。例如,根据用户的实时行为和偏好,进行商品推荐。——实时处理和分析社交媒体数据和广告数据,进行用户分析和精准营销。

        物联网(IoT)领域:物联网设备产生大量的实时数据,Flink 可以用于实时分析这些数据,进行设备监控、预警和智能调控等。

        视频、游戏:

  1. 实时数据处理和分析:视频和游戏行业通常需要实时处理和分析大量的数据,例如用户行为、播放量、在线人数等。Flink提供了高吞吐、低延迟的流处理能力,可以满足这些实时数据处理和分析的需求。
  2. 实时反馈和推荐:在视频和游戏中,用户需要实时的反馈和推荐。Flink可以实时处理数据并给出反馈,例如推荐相关内容、提供挑战排名等,从而提高用户体验和留存率。
  3. 异常检测和实时监控:视频和游戏行业需要实时监控系统状态,及时发现异常情况并处理。Flink可以实时检测数据流中的异常,及时发出警报和处理,保证系统的稳定性和可用性。
  4. 流式广告投放:在视频和游戏中,广告投放是一个重要的收入来源。Flink的实时数据处理能力可以帮助实现流式广告投放,根据用户行为和偏好进行精准投放,提高广告效果和收益。

        金融行业:金融市场数据是实时变化的,Flink 可以用于实时风险管理和欺诈检测。例如,实时监测交易行为和风险指标,进行实时风险管理和欺诈检测

        物流行业:实时路况监测和配送优化是物流领域的重要需求,Flink 可以实时处理和分析路况数据,优化配送路线和提高配送效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408625.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vivo 基于 StarRocks 构建实时大数据分析平台,为业务搭建数据桥梁

在大数据时代,数据分析和处理能力对于企业的决策和发展至关重要。 vivo 作为一家全球移动互联网智能终端公司,需要基于移动终端的制造、物流、销售等各个方面的数据进行分析以满足业务决策。 而随着公司数字化服务的演进,业务诉求和技术架构有…

动态规划课堂1-----斐波那契数列模型

目录 动态规划的概念: 动态规划的解法流程: 题目: 第 N 个泰波那契数 解法(动态规划) 代码: 优化: 题目:最小花费爬楼梯 解法(动态规划) 解法1: 解…

【QT 5 +Linux下软件生成+qt软件生成使用工具+学习他人文章+第一篇:使用linuxdeployqt软件生成】

【QT 5 Linux下软件生成qt软件生成使用工具学习他人文章第一篇:使用linuxdeployqt软件生成】 1、前言2、实验环境3、自我学习总结-本篇总结1、新手的疑问,做这件事的目的2、了解工具:linuxdeployqt工具3、解决相关使用过程中问题 4、参照文章…

5分钟轻松帮你EasyRecovery恢复女朋友照片

相信有不少男性电脑玩家都会将女朋友的照片存放在电脑硬盘之内,作为珍贵的收藏和回忆。但是在某些时候,如果我们错误地删除了这些照片,或者由于系统问题导致其中的照片丢失,那么我们怎么找回女朋友的照片?这个问题就足…

进程的学习

进程基本概念: 1.进程: 程序:存放在外存中的一段数据组成的文件 进程:是一个程序动态执行的过程,包括进程的创建、进程的调度、进程的消亡 2.进程相关命令: 1.top 动态查看当前系统中的所有进程信息(根据CPU占用率排序&#xf…

微芒计划-简洁方便的效率待办管理工具【免费】

😲微芒计划-简洁方便的效率待办管理工具【免费】 下载地址 📝我的待办 快速添加待办任务,快速查看任务进度,摘要等。新增标签,分类,更好管理待办任务。 ☀️OKR目标管理 OKR让抽象的企业战略明确为上下对…

✅技术社区项目—Session/Cookie身份验证识别

session实现原理 SpringBoot提供了一套非常简单的session机制,那么它又是怎么工作的呢? 特别是它是怎么识别用户身份的呢? session又是存在什么地方的呢? 核心工作原理 借助cookie中的 JESSIONID 来作为用户身份标识,这个数据相同的,认…

车载电子电器架构 —— OEM基础技术概念开发流程

车载电子电器架构 —— 基础技术概念开发 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗…

SpringMVC 学习(二)之第一个 SpringMVC 案例

目录 1 通过 Maven 创建一个 JavaWeb 工程 2 配置 web.xml 文件 3 创建 SpringMVC 配置文件 spring-mvc.xml 4 创建控制器 HelloController 5 创建视图 index.jsp 和 success.jsp 6 运行过程 7 参考文档 1 通过 Maven 创建一个 JavaWeb 工程 可以参考以下博文&#x…

吴恩达deeplearning.ai:Tensorflow训练一个神经网络

以下内容有任何不理解可以翻看我之前的博客哦:吴恩达deeplearning.ai 在之前的博客中。我们陆续学习了各个方面的有关深度学习的内容,今天可以从头开始训练一个神经网络了。 Tensorflow训练神经网络模型 我们使用之前用过的例子: 这个神经…

Python中的functools模块详解

大家好,我是海鸽。 函数被定义为一段代码,它接受参数,充当输入,执行涉及这些输入的一些处理,并根据处理返回一个值(输出)。当一个函数将另一个函数作为输入或返回另一个函数作为输出时&#xf…

JAVA算法和数据结构

一、Arrays类 1.1 Arrays基本使用 我们先认识一下Arrays是干什么用的,Arrays是操作数组的工具类,它可以很方便的对数组中的元素进行遍历、拷贝、排序等操作。 下面我们用代码来演示一下:遍历、拷贝、排序等操作。需要用到的方法如下 public…

26.HarmonyOS App(JAVA)列表对话框

列表对话框的单选模式: //单选模式 // listDialog.setSingleSelectItems(new String[]{"第1个选项","第2个选项"},1);//单选 // listDialog.setOnSingleSelectListener(new IDialog.ClickedListener() { // Override …

互联网加竞赛 机器视觉opencv答题卡识别系统

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 答题卡识别系统 - opencv python 图像识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分…

C++中的左值和右值

目录 一. 左值和右值的概念 1. 左值 1.1 可修改的的左值 1.2 不可修改的左值 右值 二. 左值引用和右值引用 1. 左值引用 2. 右值引用 主要用途 1. 移动语义 2. 完美转发 2.1 引用折叠 2.2 std::forward 一. 左值和右值的概念 什么是左值和右值 1. 左值 左值是一个表示…

Unity3D 使用 Proto

一. 下载与安装 这里下载Google Protobuff下载 1. 源码用来编译CSharp 相关配置 2. win64 用于编译 proto 文件 二. 编译 1. 使用VS 打开 2. 点击最上面菜单栏 工具>NuGet 包管理器>管理解决方案的NuGet 管理包 版本一定要选择咱们一开始下载的对应版本否则不兼容&am…

使用免费的L53巧解Freenom域名失效问题

进入2月份以来,不少小伙伴纷纷收到Freenom提供的域名失效,状态由正常变成了Pending。 失效后,域名无法使用,免费的午餐没有了,而现在域名的价格也是水涨船高,真是XXX。很多做外贸的小伙伴表示 难 啊&#x…

树状数组与线段树<2>——线段树初步

这个系列终于更新了(主要因为树状数组初步比较成功) 话不多说,切入正题。 什么是线段树? 线段树是一种支持单点修改区间查询(树状数组也行) and 区间修改单点查询(树状数组不行) and 区间修改区间查询(树状数组更不行)的高级数据结构,相当…

Chiplet技术与汽车芯片(二)

目录 1.回顾 2.Chiplet的优势 2.1 提升芯片良率、降本增效 2.2 设计灵活,降低设计成本 2.3 标准实行,构建生态 3.Chiplet如何上车 1.回顾 上一篇,我们将来芯粒到底是什么东西,本篇我们来看芯粒技术的优势,以及它…

5.1 Ajax数据爬取之初介绍

目录 1. Ajax 数据介绍 2. Ajax 分析 2.1 Ajax 例子 2.2 Ajax 分析方法 (1)在网页页面右键,检查 (2)找到network,ctrl R刷新 (3)找 Ajax 数据包 (4)…