【MATLAB】 LMD信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码,请转文末观看代码获取方式~

展示出图效果

1 LMD分解算法

LMD (Local Mean Decomposition) 分解算法是一种信号分解算法,它可以将一个信号分解成多个局部平滑的成分,并且可以将高频噪声和低频信号有效地分离出来。LMD 分解算法是一种自适应的分解方法,可以根据信号的局部特征来进行分解,从而提高了分解的精度和效果。 LMD 分解算法的基本思想是,在原始信号中选取局部的极大值点和极小值点,然后通过这些极值点之间的平均值来计算一个局部平滑的成分。这个过程可以迭代进行,直到得到所有的局部平滑的成分。最后,将这些局部平滑的成分加起来,即可得到原始信号的分解结果。 LMD 分解算法具有以下优点:

  1. 自适应性强:LMD 分解算法可以根据信号的局部特征来进行分解,从而提高了分解的精度和效果。

  2. 分解精度高:LMD 分解算法可以将高频噪声和低频信号有效地分离出来,从而提高了分解的精度。

  3. 计算效率高:LMD 分解算法的计算量较小,可以快速地进行信号分解。总之,LMD 分解算法是一种高效、精确、自适应的信号分解算法,被广泛应用于信号处理、图像处理、语音处理等领域。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

MATLAB 信号分解第八期-LMD 分解开源 MATLAB 代码请转:

信号分解全家桶详情请参见:

2 FFT傅里叶频谱变换算法

傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:

  1. 给定一个连续时间域函数f(t),其中t为时间。

  2. 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。

  3. F(ω)表示了f(t)中所有频率分量的幅度和相位信息。

  4. 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。

MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:

MATLAB | 9种频谱分析算法全家桶详情请参见:

3 LMD信号分解+FFT傅里叶频谱变换组合算法

如下为简短的视频操作教程。

【MATLAB 】LMD信号分解+FFT傅里叶频谱变换组合算法请转:

【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


代码见附件~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408420.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

消息中间件篇之RabbitMQ-消息不丢失

一、生产者确认机制 RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。 当消息没有到交换机就失败了,就会返回publish-confirm。当消息没有到达MQ时&…

打开 Camera app 出图,前几帧图像偏暗、偏色该怎样去避免?

1、问题背景 使用的安卓平台,客户的应用是要尽可能快的获取到1帧图像效果正常的图片。 但当打开 camera 启动出流后,前3-5帧图像是偏暗、偏色的,如下图所示,是抓取出流的前25帧图像, 前3帧颜色是偏蓝的,…

[嵌入式系统-33]:RT-Thread -18- 新手指南:三种不同的版本、三阶段学习路径

目录 前言:学习路径:入门学习-》进阶段学习》应用开发 一、RT-Thread版本 1.1 标准版 1.2 Nano 1.3 Smart版本 1.4 初学者制定学习路线 1.5 RT-Thread在线文档中心目录结构 1.6 学习和使用RT-Thread的三种场景 二、入门学习阶段:内…

架构设计:微服务架构实践

引言 前段时间做项目的时候有客户问到过我,什么微服务?微服务是一种架构风格,其中软件系统被构建为一组小型服务,每个服务都运行在自己的进程中并使用轻量级通信机制(如HTTP或消息队列)进行通信。这些服务…

Spring Boot与Netty:构建高性能的网络应用

点击下载《Spring Boot与Netty:构建高性能的网络应用》 1. 前言 本文将详细探讨如何在Spring Boot应用中集成Netty,以构建高性能的网络应用。我们将首先了解Netty的原理和优势,然后介绍如何在Spring Boot项目中集成Netty,包括详…

代码随想录算法训练营第三天

● 自己看到题目的第一想法 203.移除链表元素 方法一: 思路: 设置虚拟头节点 dummyhead 设置临时指针 cur 遍历 整个链表 循环: 如果 cur !nullptr &&cur->next !nullptr 则 遍历链表 否则结束遍历 如果 cur->next val 则…

C++ //练习 8.4 编写函数,以读模式打开一个文件,将其内容读入到一个string的vector中,将每一行作为一个独立的元素存于vector中。

C Primer(第5版) 练习 8.4 练习 8.4 编写函数,以读模式打开一个文件,将其内容读入到一个string的vector中,将每一行作为一个独立的元素存于vector中。 环境:Linux Ubuntu(云服务器&#xff09…

装修避坑干货|阳台洗衣柜洗衣机一体柜设计。福州中宅装饰,福州装修

装修的时候常常会在洗衣柜中嵌入洗衣机,其实阳台柜的安装并不像看起来的那么简单,下面给大家说说几个注意事项‼️ 01.水电位置 在安装阳台柜之前,务必确认水电管道的位置。确保阳台柜不会阻碍水电管道的使用,以免造成不必要的麻…

U盘乱码与文件丢失:恢复指南与预防策略

U盘乱码文件丢失是一种常见的技术问题,通常表现为存储在U盘中的文件名显示为不可识别的字符或文件无法正常打开,有时甚至文件会完全消失。这种情况可能由多种原因引起,包括但不限于文件系统损坏、不正确的拔插操作、病毒感染、兼容性问题等。…

花生壳内网穿透教程(图文并茂)

目录 前言: 使用教程: 1.注册账号 2.软件下载及安装: 3.账号绑定及花生壳的使用 4.内网穿透的配置(重点) 4.2 新增映射页面: 4.3 上面几种映射的区别: 4.4 上面TCP类型的区别:…

Linux进程信号 ----- (信号保存)

前言 信号从产生到执行,并不会被立即处理,这就意味着需要一种 “方式” 记录信号是否产生,对于 31 个普通信号来说,一个 int 整型就足以表示所有普通信号的产生信息了;信号还有可能被 “阻塞”,对于这种多状…

鸿蒙中的九种布局概述

鸿蒙中的九种布局概述 概述 鸿蒙开发中包含就种布局,分别为线性布局、层叠布局、弹性布局、相对布局、栅格布局、媒体布局、列表、网格、轮播。 线性布局 线性布局通过Row和Column进行构建,是其他布局的基础。其中Row是水平方向排列,Colu…

电路设计(25)——4位数字频率计的multisim仿真及PCB设计

1.设计要求 使用4位数码管,显示输入信号的频率。完成功能仿真后,用AD软件,画出原理图以及PCB。 2.电路设计 输入信号的参数为: 可见,输入为168HZ,测量值为170HZ,误差在可接受的范围内。 3.PCB设…

Jenkins解决Host key verification failed (2)

Jenkins解决Host key verification failed 分析原因情况 一、用OpenSSH的人都知ssh会把你每个你访问过计算机的公钥(public key)都记录在~/.ssh/known_hosts。当下次访问相同计算机时,OpenSSH会核对公钥。如果公钥不同,OpenSSH会发出警告,避免…

【Java程序设计】【C00299】基于Springboot的仓库管理系统(有论文)

基于Springboot的仓库管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的仓库管理系统,本系统有管理员角色权限; 系统整体功能有:个人信息管理、仓库管理、物资管理、物资…

matplotlib子图绘制

文章目录 子图组合网格布局GridSpec matplotlib教程: 初步 子图 从绘图流程出发,【plt】图像有三个层级,依次是窗口、坐标系以及图像。在一个坐标系中可以有多条曲线,即表示多个图像;相应地在一个窗口中,…

文心一言 VS 讯飞星火 VS chatgpt (201)-- 算法导论15.2 6题

六、用go语言,证明:对 n 个元素的表达式进行完全括号化,恰好需要 n-1 对括号。 文心一言,代码正常运行: 在Go语言中,证明对n个元素的表达式进行完全括号化恰好需要n-1对括号,可以通过数学归纳…

将yolov8权重文件转为onnx格式并在c#中使用

yolo模型转ONNX 在yolov8中,我们将训练结果的.pt权重文件转换为onnx格式只需要使用ultralytics库中的YOLO类,使用pip安装ultralytics库,然后执行下面python代码 from ultralytics import YOLO# 加载YOLOv8模型 model YOLO("best.pt&q…

听力障碍的康复训练方法有哪些?

康复小知识 回声复语教育科技研究院 知识分享 听力障碍/概况 听力障碍是指“由于各种原因导致双耳不同程度的永久性听力障碍,听不到或听不清周围环境及言语声,以致影响日常生活和社会参与”。 聋儿的语言器官本身并不存在问题,通过现代科学…

数据结构链表力扣例题AC(3)——代码以及思路记录

160. 相交链表 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 AC写法一 struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) {//思…