异步框架Celery在Django中的运用

参考博客:https://www.cnblogs.com/pyedu/p/12461819.html

参考视频:01 celery的工作机制_哔哩哔哩_bilibili


定义:简单灵活、处理大量消息的分布式系统,专注于实时处理异步队列,支持任务调度

主要架构:

  1. 消息中间件:message broker 可以集成第三方消息中间件如Redis、RabbitMQ
  2. 任务执行单元:worker 是celery提供的执行的任务执行的单元,并发分布在分布式的系统节点中
  3. 任务执行结果存储:task result store来存储执行任务的结果,支持方式 redis、AMQP

同步请求: 顺序进行IO操作等待阻塞进程依次执行

异步请求:异步进行,当IO操作阻塞时放到执行单元中完成放到数据库中而不影响其他单元的执行,当主进程需要阻塞的进程结果时会向是数据库中取出该数据(即将耗时操作放到异步队列中不影响主进程的执行),继续向下进行

使用场景:

  1. 异步任务:将耗时操作任务提交到celery异步执行,如:发送短信、消息推送、音视频处理
  2. 定时任务:定时执行某件事情,如:每日数据统计

主要优点:

  • 简单:使用和维护不要配置文件,只需添加基本信息的配置
  • 高可用:在work和client网络连接丢失或失败时会自动进行重试
  • 快速:单个celery进程可每分钟处理百万级任务,只需要毫秒级的往返延迟
  • 灵活:可以扩展使用,自定义池的实现、序列化、日志记录、消费者、broker消息传输

安装:

pip install celery

实践案例:

"""
异步任务执行文件:celery_task.py
消费者模型
"""
import celery
import time
# task.py
import os

os.environ.setdefault('FORKED_BY_MULTIPROCESSING', '1')

backend='redis://127.0.0.1:6379/1'
broker='redis://127.0.0.1:6379/2'
cel=celery.Celery('test',backend=backend,broker=broker)
@cel.task
def send_email(name):
    print("向%s发送邮件..."%name)
    time.sleep(5)
    print("向%s发送邮件完成"%name)
    return "ok"

@cel.task
def send_msg(name):
    print("向%s发送短信..."%name)
    time.sleep(5)
    print("向%s发送短信完成"%name)
    return "ok"


""""
执行任务文件: produce_task.py
生成者模型
"""
from celery_task import send_email,send_msg
result = send_email.delay("yuan") # 当执行delay函数时会自动调用消息中间件的任务执行队列,放到任务执行单元中
print(result.id)
result = send_msg.delay("alex")
print(result.id)

先启动redis进程

 使用特定命令下发指令执行celery任务:

(注意celery5.0之前的命令是不一样的:celery worker -A celery_task -l info)

 先执行produce_task.py

返回ID: 

 fd27bc20-ccac-4855-9b3d-150708bad2a6
c07cb5b1-845a-44c4-963b-7ce3f92b98c8

 检查celery的异步队列查看执行结果

 注:当遇到以下情况

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "D:\python3\lib\site-packages\billiard\pool.py", line 361, in workloop
    result = (True, prepare_result(fun(*args, **kwargs)))
  File "D:\python3\lib\site-packages\celery\app\trace.py", line 664, in fast_trace_task
    tasks, accept, hostname = _loc
ValueError: not enough values to unpack (expected 3, got 0)
[2024-02-24 15:31:20,394: ERROR/MainProcess] Task handler raised error: ValueError('not enough values to unpack (expected 3, got 0)')

解决方法:

在消费者模型中添加以下代码

import os
os.environ.setdefault('FORKED_BY_MULTIPROCESSING', '1')

 查看异步执行的结果:

"""
查看任务执行结果: result.py
"""
from celery.result import AsyncResult
from celery_task import cel

async_result=AsyncResult(id="fd27bc20-ccac-4855-9b3d-150708bad2a6", app=cel)

if async_result.successful():
    result = async_result.get()
    print(result)
    # result.forget() # 将结果删除
elif async_result.failed():
    print('执行失败')
elif async_result.status == 'PENDING':
    print('任务等待中被执行')
elif async_result.status == 'RETRY':
    print('任务异常后正在重试')
elif async_result.status == 'STARTED':
    print('任务已经开始被执行')

# 运行结果是上面执行返回的结果:
ok 

celery多任务结构下异步执行:注意celery_tasks的celery名字是固定,不然会报错

# celery
from celery import Celery

cel = Celery('celery_demo',
             broker='redis://127.0.0.1:6379/1',
             backend='redis://127.0.0.1:6379/2',
             # 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
             include=['celery_tasks.task01',
                      'celery_tasks.task02'
                      ])

# 时区
cel.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
cel.conf.enable_utc = False

# task01
import time
from .celery import cel

@cel.task
def send_email(res):
    time.sleep(5)
    return "完成向%s发送邮件任务"%res

# task02
import time
from .celery import cel
@cel.task
def send_msg(name):
    time.sleep(5)
    return "完成向%s发送短信任务"%name

# """"
执行任务文件: produce_task.py  和上面的celery_task保持在同一级目录
生成者模型
"""
from celery_tasks.task01 import send_email
from celery_tasks.task02 import send_msg

# 立即告知celery去执行test_celery任务,并传入一个参数
result = send_email.delay('yuan')
print(result.id)
result = send_msg.delay('yuan')
print(result.id)
E:\desktop\my_drf\celerypro>celery -A celery_tasks worker -l info -P eventlet

运行结果:

 定时任务的配置:

# 更新produce_task 文件,增加定时任务
from celery_task import send_email
from datetime import datetime

# 方式一
# v1 = datetime(2020, 3, 11, 16, 19, 00)
# print(v1)
# v2 = datetime.utcfromtimestamp(v1.timestamp())
# print(v2)
# result = send_email.apply_async(args=["egon",], eta=v2)  #  定时任务
# print(result.id)

# 方式二
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=10)  # 当时时间10s后执行任务
task_time = utc_ctime + time_delay

# 使用apply_async并设定时间
result = send_email.apply_async(args=["egon"], eta=task_time)
print(result.id)

# 更新setting
cel.conf.beat_schedule = {
    # 名字随意命名
    'add-every-10-seconds': {
        # 执行tasks1下的test_celery函数
        'task': 'celery_tasks.task01.send_email',
        # 每隔2秒执行一次
        # 'schedule': 1.0,
        # 'schedule': crontab(minute="*/1"),
        'schedule': timedelta(seconds=6),
        # 传递参数
        'args': ('张三',)
    },
    # 'add-every-12-seconds': {
    #     'task': 'celery_tasks.task01.send_email',
    #     每年4月11号,8点42分执行
    #     'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
    #     'args': ('张三',)
    # },
} 

运行结果:

 根据上述配置每6s执行task01发送邮件任务

注意:

# 周期性执行任务单元,要注意先启动beat进程而后执行worker单元
E:\desktop\my_drf\celerypro>celery -A celery_tasks beat
E:\desktop\my_drf\celerypro>celery -A celery_tasks worker -l info -P eventlet

注意: 当打开beat后而若没有打开worker执行单元会导致beat进程不断向数据库中加入数据

 

  查看redis堆积的数据方法:cmd命令如下

 python脚本实现:

 celery结合django中集成的运用

# tasks
# celery的任务必须写在tasks.py的文件中,别的文件名称不识别!!!
from mycelery.main import app
import time


import logging
log = logging.getLogger("django")

@app.task  # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名
def send_sms(mobile):
    """发送短信"""
    print("向手机号%s发送短信成功!"%mobile)
    time.sleep(5)

    return "send_sms OK"

@app.task  # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名
def send_sms2(mobile):
    print("向手机号%s发送短信成功!" % mobile)
    time.sleep(5)

    return "send_sms2 OK"

# config
broker_url = 'redis://127.0.0.1:6379/15'
result_backend = 'redis://127.0.0.1:6379/14'

# main
# 主程序
import os
from celery import Celery
# 创建celery实例对象
app = Celery("sms")
# import os
os.environ.setdefault('FORKED_BY_MULTIPROCESSING', '1') # 注意: 默认配置要这样配置,下列的配置会找不到组件导致失败
# 把celery和django进行组合,识别和加载django的配置文件
# os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'celerypro.settings.dev')
# os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local")

# 通过app对象加载配置
app.config_from_object("mycelery.config")

# 加载任务
# 参数必须必须是一个列表,里面的每一个任务都是任务的路径名称
# app.autodiscover_tasks(["任务1","任务2"])
app.autodiscover_tasks(["mycelery.sms",])




# view 
from django.shortcuts import render,HttpResponse
from mycelery.sms.tasks import send_sms,send_sms2
from datetime import timedelta

from datetime import datetime
def test(request):

    ################################# 异步任务

    # 1. 声明一个和celery一模一样的任务函数,但是我们可以导包来解决

    send_sms.delay("110")
    send_sms2.delay("119")
    # send_sms.delay() #  如果调用的任务函数没有参数,则不需要填写任何内容


    ################################# 定时任务

    ctime = datetime.now()
    # 默认用utc时间
    utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
    time_delay = timedelta(seconds=3) # 3s 发送消息
    task_time = utc_ctime + time_delay
    result = send_sms.apply_async(["911", ], eta=task_time)
    print(result.id)

    return HttpResponse('ok')


启动Celery的命令

# 强烈建议切换目录到mycelery根目录下启动
# E:\desktop\my_drf\celerypro>celery -A mycelery.main worker --loglevel=info

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408379.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++那些事儿】C++入门 | 命名空间 | 缺省参数 | 引用 | 内联函数 | auto关键字 | 范围for循环 | nullptr

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构冒险记 ✅C那些事儿 🌅 有航道的人,再渺小也不会迷途。 文章目录 前言1. C关键字(C98)2. 命名空间2.1 命名空间定义2.2 命名空间使用 3. C输入&输出4. 缺…

【Linux基础】vim、常用指令、组管理和组权限

Linux基础 1、目录结构2、vi和vim3、常用指令运行级别找回密码帮助指令时间日期指令搜索查找文件目录操作磁盘管理指令压缩和解压缩 4、组管理和组权限用户操作指令权限 1、目录结构 Linux的文件系统是采用级层式的树状目录结构,在此结构中的最上层是根目录“/”&a…

StarRocks——滴滴OLAP的技术实践与发展方向

原文大佬的这篇StarRocks实践文章整体写的很深入,介绍了StarRocks数仓架构设计、物化视图加速实时看板、全局字典精确去重等内容,这里直接摘抄下来用作学习和知识沉淀。 目录 一、背景介绍 1.1 滴滴OLAP的发展历程 1.2 OLAP引擎存在的痛点 1.2.1 运维…

K线实战分析系列之十:市场进入犹豫不定状态——孕线形态

K线实战分析系列之十:市场进入犹豫不定状态——孕线形态 一、重要反转形态二、其他反转形态三、孕线形态四、孕线形态和吞没形态的区别五、十字孕线形态六、总结孕线形态 一、重要反转形态 伞形线吞没形态乌云盖顶刺透形态启明星形态黄昏星形态十字启明星与十字黄昏…

Java之线程池:线程池常用类、接口;线程池执行流程,配置参数,分类

线程池 什么是线程池? 线程池:一种基于池化思想管理和使用线程的机制 线程池常用类和接口 ExecutorService接口:进行线程池的操作访问Executors类:创建线程池的工具类ThreadPoolExecutor及其子类:封装线程池的核心参…

K线实战分析系列之九:顶底判断——流星和倒锤子线

K线实战分析系列之九:顶底判断——流星和倒锤子线 一、流星线二、倒锤子线三、总结流星形态和倒锤子形态 一、流星线 主要特征是实体比较小,位于低端位置,带着长上影线,就像流星划过天际时,拖着一个长长的尾巴&#xf…

Unity(第三部)新手绘制地形

1、创建地形 游戏对象3d对象地形 2、功能 1、 红框内按键为创建相邻地形、点击后相近地形会呈现高亮框、点击高亮区域可以快速创建地形 每块地形面积是1km*1km 2、第二个按钮是修改地形 下面的选择是修改类型 选项含义描述Raise or Lower Terrain升高或降低地形单击左键可…

STM32 TCP实现OTA

芯片:stm32f407 开发平台:stm32cubeide 上位机开发平台:visual studio 2017 1. FLASH分配 将flash划分为四个部分: bootloader: 0x8000000-0x800ffff app1: 0x8010000-0x805ffff app2: …

GEE入门篇|遥感专业术语(实践操作3):时间分辨率(Temporal Resolution)

目录 时间分辨率(Temporal Resolution) 1.Landsat 2.Sentinel-2 时间分辨率(Temporal Resolution) 时间分辨率是指特定传感器图像流的重访时间或时间节奏,重访时间是指卫星连续访问地球表面同一位置…

程序员副业接单做私活避坑指南

最近有不少读者私信我想接私活,想赚外快。 这篇文章系统的分享了对接单做私活这件事情的思考,也给出一些干货建议。希望让大家少走一些弯路,不要被坑。 先说结论 不建议大家在接单这个事情上投入太大精力,如果你“贼心不改”&am…

Nginx基本操作

目录 引言 一、Nginx配置文件详解 (一)配置文件 (二)模块 二、全局配置文件 (一)关闭版本或修改版本 1.关闭版本号 2.修改版本信息 (二)修改启动的进程数 (三&…

MongoDB之客户端工具与核心概念及基本类型篇

MongoDB之客户端工具与核心概念及基本类型篇 文章目录 MongoDB之客户端工具与核心概念及基本类型篇1. MongoDB是什么?1. 关于MongoDB2. 相关客户端工具1. MongoDB Compass2. Studio 3T3. Navicat for MongoDB4. NoSQL Manager for MongoDB Professional 2.MongoDB相关概念2.1 …

Linux安装JDK,Tomcat,MySQL的安装以及项目部署

一、jdk安装配置 传入资源 连接后,创建存放资源的文件,将jdk,tomcat,Mysql的压缩包复制到文件中。 输入命令: cd javaCloudJun/software (进入要文件中) 输入命令 : pwd (查看当前的文件路径) 将文件路径复制到左边的搜索框中…

接口测试实战--自动化测试流程

一、项目前期准备 常见项目软件架构: springMvc:tomcat里运行war包(在webapps目录下) springboot:java -jar xx.jar -xms(**) 运行参数 springCloud:k8s部署,使用kubectl create -f xx.yaml 接口自动化测试介入需越早越好,只要api定义好就可以编写自动化脚本; 某个…

掌握BeautifulSoup4:爬虫解析器的基础与实战【第91篇—BeautifulSoup4】

掌握BeautifulSoup4:爬虫解析器的基础与实战 网络上的信息浩如烟海,而爬虫技术正是帮助我们从中获取有用信息的重要工具。在爬虫过程中,解析HTML页面是一个关键步骤,而BeautifulSoup4正是一款功能强大的解析器,能够轻…

typecho 给文章创建目录树

受益于 shortcode 短代码插件和泽泽短代码中目录树的显示样式&#xff0c;形成了自己实现添加文章目录的思路&#xff1a; 一、文章目录树的结构 <div id"toc"><div class"toc-left"><div class"toc-btn" type"button&quo…

1.QT简介(介绍、安装,项目创建等)

1. QT介绍 Qt&#xff08;官方发音 [kju:t]&#xff09;是一个跨平台的C开发库&#xff0c;主要用来开发图形用户界面&#xff08;Graphical User Interface&#xff0c;GUI&#xff09;程序 Qt 是纯 C 开发的&#xff0c;正常情况下需要先学习C语言、然后在学习C然后才能使用…

三院院士 Michael I. Jordan 指出:大模型在两个方向仍需 “努力“,补充过度自信问题和逆转诅咒问题

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 三院院士 Michael I. Jordan 指出&#xff1a;大模型在两个方向仍需 “努力“ Michael I. Jordan 的个人主页&#xff1a;https://people.eecs.berkeley.edu/~jordan/ 回顾过去的一年&#xff0c;大模…

【数据结构和算法初阶(c语言)】数据结构前言,初识数据结构(给你一个选择学习数据结构和算法的理由)

1.何为数据结构 数据结构(Data Structure)是计算机存储、组织数据的方式&#xff0c;指相互之间存在一种或多种特定关系的 数据元素的集合。本质来讲就是在内存中去管理数据方式比如我们的增删查改。在内存中管理数据的方式有很多种&#xff08;比如数组结构、链式结构、树型结…

【Spring MVC】处理器映射器:AbstractHandlerMethodMapping源码分析

目录 一、继承体系 二、HandlerMapping 三、AbstractHandlerMapping 四、AbstractHandlerMethodMapping 4.1 成员属性 4.1.1 MappingRegistry内部类 4.2 AbstractHandlerMethodMapping的初始化 4.3 getHandlerInternal()方法&#xff1a;根据当前的请求url&#xff0c;…