太阳能光伏模型的参数确定及模型应用介绍

一、太阳能光伏模型介绍


太阳能通过光伏(PV)发电系统转化为电能。通过使用新材料技术,一直致力于提高光伏系统中太阳能电池的功率转换效率。基于钙钛矿太阳能电池的冠军器件具有24.8%的认证功率转换效率,仍有很大的改进空间。因此,对精确的光伏电池模型进行仿真、控制和优化对于使光伏发电系统在不同天气条件和温度下具有更高和稳定的转换效率具有帮助和至关重要。

关于光伏模型,有几种主流模型,包括单二极管模型(SDM),双二极管模型(DDM),三二极管模型(TDM),光伏组件模型(MM)等。精确的光伏电池建模被认为是分析光伏系统的特定特性(如电流-电压(I-V)特性)的关键,而参数估计是光伏模型中的一个关键问题。希望找到接近实验数据的模型参数值,以最大限度地提高PV模型在特定条件下的性能。光伏系统的仿真、性能评估、优化设计和实时控制的参数估计至关重要。为了获得高性能的光伏模型,总是要施加准确的参数。此外,它可以为太阳能电池制造中的应用设计、光伏转换增强和最大功率点跟踪提供有价值的指导。因此,光伏模型中的参数估计越来越受到关注,并提出了各种方法来解决这个问题。

在这里插入图片描述

上图中(a)~(d)分别为单二极管(SDM)、双二极管(DDM)、三二极管模型(TDM)和光伏组件模型(MM)。

为了正确估计PV模型中的参数,首先设计了一个误差函数来描述测量电流数据和实验电流数据之间的差异。显然,我们的目标是在光伏模型中找到一组参数,以尽量减少这种误差。将设计的误差函数视为目标函数,在此基础上评估所有解,并演化并保存优秀解以存活到下一次迭代中。

1.1单二极管(SDM)

I L = I p h − I d − I s h = I p h − I s d [ exp ⁡ ( q ( V L + R s I L ) a k T ) − 1 ] − V L + R s I L R s h I_{L}=I_{ph}-I_{d}-I_{sh}=I_{ph}-I_{sd}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{akT}\right)-1\right]-\frac{V_{L}+R_{s}I_{L}}{R_{sh}} IL=IphIdIsh=IphIsd[exp(akTq(VL+RsIL))1]RshVL+RsIL
​​ { f i ( V L , I L , X ) = I p h − I s d [ exp ⁡ ( q ( V L + R s I L ) a k T ) − 1 ] − V L + R s I L R s h − I L X = { I p h , I s d , R s , R s h , a } \begin{cases}f_i(V_L,I_L,X)=I_{ph}-I_{sd}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{akT}\right)-1\right]-\frac{V_{L}+R_{s}I_{L}}{R_{sh}}-I_L\\\\X=\{I_{ph},I_{sd},R_s,R_{sh},a\}\end{cases} fi(VL,IL,X)=IphIsd[exp(akTq(VL+RsIL))1]RshVL+RsILILX={Iph,Isd,Rs,Rsh,a}

1.2双二极管(DDM)

I L = I p h − I d − I s h = I p h − I s d 1 [ exp ⁡ ( q ( V L + R s I L ) a 1 k T ) − 1 ] − I s d 2 [ exp ⁡ ( q ( V L + R s I L ) a 2 k T ) − 1 ] − V L + R s I L R s h I_{L}=I_{ph}-I_{d}-I_{sh}=I_{ph}-I_{sd1}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{1}kT}\right)-1\right]-I_{sd2}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{2}kT}\right)-1\right]-\frac{V_{L}+R_{s}I_{L}}{R_{sh}} IL=IphIdIsh=IphIsd1[exp(a1kTq(VL+RsIL))1]Isd2[exp(a2kTq(VL+RsIL))1]RshVL+RsIL
{ f i ( V L , I L , X ) = I p h − I s d 1 [ exp ⁡ ( q ( V L + R s I L ) a 1 k T ) − 1 ] − I s d 2 [ exp ⁡ ( q ( V L + R s I L ) a 2 k T ) − 1 ] − V L + R s I L R s h − I L X = { I p h , I s d 1 , I s d 2 , R , R s d , a 1 , a 2 } \begin{cases}f_i(V_L,I_L,X)=I_{ph}-I_{sd1}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{1}kT}\right)-1\right]-I_{sd2}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{2}kT}\right)-1\right]-\frac{V_{L}+R_{s}I_{L}}{R_{sh}}-I_L\\X=\{I_{ph},I_{sd1},I_{sd2},R,R_{sd},a_1,a_2\}\end{cases} {fi(VL,IL,X)=IphIsd1[exp(a1kTq(VL+RsIL))1]Isd2[exp(a2kTq(VL+RsIL))1]RshVL+RsILILX={Iph,Isd1,Isd2,R,Rsd,a1,a2}

1.3三二极管模型(TDM)

I L = I p h − I d − I s h = I p h − I s d 1 [ exp ⁡ ( q ( V L + R s I L ) a 1 k T ) − 1 ] − I s d 2 [ exp ⁡ ( q ( V L + R s I L ) a 2 k T ) − 1 ] − I s d 3 [ exp ⁡ ( q ( V L + R s I L ) a 3 k T ) − 1 ] − V L + R s I L R s h I_{L}=I_{ph}-I_{d}-I_{sh}=I_{ph}-I_{sd1}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{1}kT}\right)-1\right]-I_{sd2}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{2}kT}\right)-1\right]-I_{sd3}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{3}kT}\right)-1\right]-\frac{V_{L}+R_{s}I_{L}}{R_{sh}} IL=IphIdIsh=IphIsd1[exp(a1kTq(VL+RsIL))1]Isd2[exp(a2kTq(VL+RsIL))1]Isd3[exp(a3kTq(VL+RsIL))1]RshVL+RsIL
{ f i ( V L , I L , X ) = I p h − I s d 1 [ exp ⁡ ( q ( V L + R s I L ) a 1 k T ) − 1 ] − I s d 2 [ exp ⁡ ( q ( V L + R s I L ) a 2 k T ) − 1 ] − I s d 3 [ exp ⁡ ( q ( V L + R s I L ) a 3 k T ) − 1 ] − V L + R s I L R s h − I L X = { I p h , I s d 1 , I s d 2 , I s d 2 , R s , R s h , a 1 , a 2 , a 3 } \begin{cases}f_i(V_L,I_L,X)=I_{ph}-I_{sd1}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{1}kT}\right)-1\right]-I_{sd2}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{2}kT}\right)-1\right]-I_{sd3}\left[\exp\left(\frac{q(V_{L}+R_{s}I_{L})}{a_{3}kT}\right)-1\right]-\frac{V_{L}+R_{s}I_{L}}{R_{sh}}-I_L\\X=\{I_{ph},I_{sd1},I_{sd2},I_{sd2},R_s,R_{sh},a_1,a_2,a_3\}\end{cases} {fi(VL,IL,X)=IphIsd1[exp(a1kTq(VL+RsIL))1]Isd2[exp(a2kTq(VL+RsIL))1]Isd3[exp(a3kTq(VL+RsIL))1]RshVL+RsILILX={Iph,Isd1,Isd2,Isd2,Rs,Rsh,a1,a2,a3}

1.4光伏组件模型(MM)

I L / N p = I p h − I s d [ exp ⁡ ( q ( V L / N s + R s I L / N p ) a k T ) − 1 ] − V L / N s + R s I L / N p R s h I_L/N_p=I_{ph}-I_{sd}\left[\exp\left(\frac{q(V_L/N_s+R_sI_L/N_p)}{akT}\right)-1\right]-\frac{V_L/N_s+R_sI_L/N_p}{R_{sh}} IL/Np=IphIsd[exp(akTq(VL/Ns+RsIL/Np))1]RshVL/Ns+RsIL/Np
{ f i ( V L , I L , X ) = I p h − I s d [ exp ⁡ ( q ( V L / N s + R s I L / N p ) a k T ) − 1 ] − V L / N s + R s I L / N p R s h − I L / N p X = { I p h , I s d , R s , R s h , a } \begin{cases}f_i(V_L,I_L,X)=I_{ph}-I_{sd}\bigg[\exp\left(\frac{q(V_L/N_s+R_sI_L/N_p)}{akT}\right)-1\bigg]-\frac{V_L/N_s+R_sI_L/N_p}{R_{sh}}-I_L/N_p\\\\X=\{I_{ph},I_{sd},R_s,R_{sh},a\}\end{cases} fi(VL,IL,X)=IphIsd[exp(akTq(VL/Ns+RsIL/Np))1]RshVL/Ns+RsIL/NpIL/NpX={Iph,Isd,Rs,Rsh,a}
对于 SDM、DDM、TDM 和 MM,将均方根误差(RMSE)用作这些优化方法的目标函数,以量化总体误差,给出如下:

R M S E ( X ) = 1 N ∑ i = 1 N f ( V L , I L , X ) \mathrm{RMSE}(X)=\sqrt{\frac{1}{N}\sum_{i=1}^{N}f(V_{L},I_{L},X)} RMSE(X)=N1i=1Nf(VL,IL,X)

其中N表示实验数据的数量。

参考文献:

[1] Gao S , Wang K , Tao S , et al. A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models[J]. Energy Conversion and Management, 2021, 230:113784.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408131.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

学习 LangChain 的 Passing data through

学习 LangChain 的 Passing data through 1. Passing data through2. 示例 1. Passing data through RunnablePassthrough 允许不改变或添加额外的键来传递输入。这通常与 RunnableParallel 结合使用,将数据分配给映射中的新键。 RunnablePassthrough() 单独调用&…

ChatGPT Plus遇到订阅被拒原因与解决方案

ChatGPT Plus被广泛认为相比普通版本更快、更强,并且能最先体验新功能。 很多小伙伴再订阅时遇到图片中的问题 错误提示包括这些: Your credit card was declined.Try paying with a debit card instead.您的信用卡被拒绝了。请尝试用借记卡支付。你的…

Data-Shape制作UI节点简介

很多小伙伴对于Data-Shape制作简单的UI都是似懂非懂,群里很多小伙伴也总是询问相关的问题,那么,今天我就简单举几个例子,专门介绍下Data-Shape创建简单UI的教程。 首先,本次教程,使用的是Data-Shape 2021.…

队列基础练习(C语言实现)

目录 队列基础练习 用队列实现栈 用栈实现队列 设计循环队列 队列基础练习 用队列实现栈 题目链接:225. 用队列实现栈 - 力扣(LeetCode) 请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部…

政安晨【示例演绎虚拟世界开发】(一):Cocos Creator 的 Hello World

政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: AI虚拟世界大讲堂 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正。 前言 Cocos Creator是一款非常强大的游戏开发引擎,它有着优秀…

基于springboot+vue的安康旅游网站(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

洛谷P5723 质数口袋 题解

#题外话&#xff08;第39篇题解&#xff09;&#xff08;本题为普及-难度&#xff09; #先看题目 题目链接https://www.luogu.com.cn/problem/P5723 #思路&#xff08;看代码吧&#xff09; #代码 #include <bits/stdc.h> using namespace std; bool p(int p_i){for(i…

啊丢的刷题记录手册

1.洛谷题P1923 求第k小的数 题目描述 输入 n&#xff08;1≤n<5000000 且 n 为奇数&#xff09;个数字ai​&#xff08;1≤ai​<109&#xff09;&#xff0c;输出这些数字的第 k 小的数。最小的数是第 0 小。 请尽量不要使用 nth_element 来写本题&#xff0c;因为本题…

《优化接口设计的思路》系列:第八篇—分页接口的设计和优化

系列文章导航 第一篇—接口参数的一些弯弯绕绕 第二篇—接口用户上下文的设计与实现 第三篇—留下用户调用接口的痕迹 第四篇—接口的权限控制 第五篇—接口发生异常如何统一处理 第六篇—接口防抖(防重复提交)的一些方式 第七篇—接口限流策略 第八篇—分页接口的设计和优化 …

C语言实现简单选择排序

简单选择排序 简单选择排序的平均复杂度为 O(n2),但效率通常比相同平均复杂度的直接插入排序还要差。但由于选择排序是 内部排序&#xff0c;因此在内存严格受限的情况下还是可以用的。选择排序的原理很简单&#xff0c;如下图所示&#xff1a;持续从未处理元素中找到最小值并加…

虚拟机的四种网络模式对比

nat网络地址转换 nat网络 桥接 内网模式 仅主机

【数据结构(顺序表)】

一、什么是数据结构? 数据结构是由“数据”和“结构”两词组合而来。 什么是数据&#xff1f;常见的数值1、2、3、4.....、教务系统里保存的用户信息&#xff08;姓名、性别、年龄、学历等等&#xff09;、网页里肉眼可以看到的信息&#xff08;文字、图片、视频等等&#xff…

Google炸场!最强轻量级、开放模型Gemma发布,个人PC就能用,内部员工:强是强,但名字取得让我混乱

想参与根多多学术讨论&#xff0c;请加qq群 链接直达&#xff1a;00后编程交流qq群 如果想要聊天交友&#xff0c;可以加qq群 链接直达&#xff1a;00后聊天交友处cp 欢迎大家加入 不同于OpenAI的闭源大模型&#xff0c;科技巨头如Google和Meta正积极投入开放模型的开发&a…

Qt的QFileSystemModel与QTreeView、QTableView、QListView的组合使用

1.相关描述 QFileSystemModel与QTreeView、QTableView、QListView的组合&#xff0c;当QTreeView点击发生改变&#xff0c;QTableView和QListView也会发生变化 2.相关界面 3.相关代码 mainwindow.cpp #include "mainwindow.h" #include "ui_mainwindow.h"…

Flutter开发进阶之Package

Flutter开发进阶之Package 通常我们在Flutter开发中需要将部分功能与整体项目隔离&#xff0c;一般有两种方案Plugin和Package&#xff0c;Application是作为主体项目&#xff0c;Module是作为原生项目接入Flutter模块。 当独立模块不需要与原生项目通讯只需要Plugin就可以&a…

990-05产品经理:为什么商业价值是 IT 成功的关键

In today’s digital era, CIOs must shift(转移) their priorities from cost cutting to driving revenue(收入), and from process engineering to exploiting data if they want to achieve a set of broader business outcomes. Furthermore, understanding how to measur…

讯度云网络云服务器商

讯度云网络云服务器商 讯度云服务商能够为客户提供安全、稳定、高性能的云计算服务确保数据的安全性和可靠性而且有良好的用户反馈与评价靠着良好的 高防国内云/十堰/海外/美国/G口/香港/日本/物理机/挂机宝/大量有货香港4-4 20元起 亚太scdn节点50 0.01起&#xff01;&#x…

计网 - 深入理解HTTPS:加密技术的背后

文章目录 Pre发展历史Http VS HttpsHTTPS 解决了 HTTP 的哪些问题HTTPS是如何解决上述三个风险的混合加密摘要算法 数字签名数字证书 Pre PKI - 数字签名与数字证书 PKI - 借助Nginx 实现Https 服务端单向认证、服务端客户端双向认证 发展历史 HTTP&#xff08;超文本传输协…

Yolo v9 “Silence”模块结构及作用!

论文链接&#xff1a;&#x1f47f; YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information 代码链接&#xff1a;&#x1f47f; https://github.com/WongKinYiu/yolov9/tree/main Silence代码 class Silence(nn.Module):def __init__(self):supe…

win10开机黑屏,只有鼠标,解决方案

问题描述 win10进不去桌面&#xff0c;可以进去锁屏&#xff0c;只有鼠标&#xff0c;也能进去任务管理器&#xff08;ctrlwindelete&#xff09;, 问题分析 进入任务管理器->文件->运行新任务 然后输入 explorer.exe 发现找不到了 原因&#xff1a;误删explorer.exe …