python 层次分析(AHP)

文章目录

  • 一、算法原理
  • 二、案例分析
    • 2.1 构建指标层判断矩阵
    • 2.2 求各指标权重
      • 2.2.1 算术平均法(和积法)
      • 2.2.2 几何平均法(方根法)
    • 2.3 一致性检验
      • 2.3.1 求解最大特征根值
      • 2.3.2 求解CI、RI、CR值
      • 2.3.3 一致性判断
    • 2.4 分别求解方案层权重向量及一致性检验
      • 2.4.1 景色
      • 2.4.2 吃住
      • 2.4.3 价格
      • 2.4.4 人文
    • 2.5 计算各方案得分
  • 三、python 代码
    • 3.1 和积法计算权重
    • 3.2 方根法计算权重
    • 3.3 python库 np.linalg.eig

一、算法原理

  • 层次分析法(analytic hierarchy process),简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法

  • 传统定性分析方法类似专家打分、专家判断等,仅能将指标简单地划分为几个层级(类似非常重要、比较重要、一般、比较不重要、非常不重要),这样导致部分存在差别但是不大的指标得到了同样的权重,受主观因素影响,无法对最终决策做出更好的帮助。层次分析法将不同指标间一一比对,主观与客观相结合,很好地解决了以上问题。

  • 判断矩阵量化值参照表:

因素i比因素j量化值
同等重要1
稍微重要3
较强重要5
强烈重要7
极端重要9
两相邻判断的中间值2,4,6,8
倒数假设因素i相比因素j重要程度量化值为3,相反就是1/3

二、案例分析

目的:选择某个城市旅游

方案:南京、桂林、三亚

考虑因素:景色、吃住、价格、人文
在这里插入图片描述

2.1 构建指标层判断矩阵

在这里插入图片描述
构建判断矩阵,理论上需要专家打分。

2.2 求各指标权重

2.2.1 算术平均法(和积法)

  1. 按列求和:如 1 + 4 + 1 / 2 + 3 = 8.5 1+4+1/2+3 = 8.5 1+4+1/2+3=8.5
    在这里插入图片描述

  2. 将指标层判断矩阵按列归一化(即按列求占比),如:
    0.12 = 1 / 8.5 0.12 = 1 / 8.5 0.12=1/8.5
    0.47 = 4 / 8.5 0.47 = 4 / 8.5 0.47=4/8.5
    0.06 = 1 / 2 / 8.5 0.06 = 1/2 / 8.5 0.06=1/2/8.5
    0.35 = 3 / 8.5 0.35 = 3 / 8.5 0.35=3/8.5
    在这里插入图片描述

  3. 将归一化后的矩阵按行求平均,得到权重向量w
    在这里插入图片描述

2.2.2 几何平均法(方根法)

  1. 每行各元素相乘(行乘积),如 1 ∗ 1 / 4 ∗ 2 ∗ 1 / 3 = 0.1667 1*1/4*2*1/3 = 0.1667 11/421/3=0.1667
    在这里插入图片描述

  2. 对乘积列每个元素开n次方(n为矩阵阶数,此处n=4),如 0.1667 4 = 0.6389 \sqrt[4]{0.1667}=0.6389 40.1667 =0.6389.
    在这里插入图片描述

  3. 然后对开方列求列占比,得到权重向量w,如 0.1171 = 0.6389 / 5.4566 0.1171=0.6389 / 5.4566 0.1171=0.6389/5.4566.
    在这里插入图片描述

2.3 一致性检验

2.3.1 求解最大特征根值

得到权重向量后,可以计算出原判断矩阵的最大特征根值,公式为:

λ m a x = 1 n ∑ i = 1 n ( A W i ) W i \lambda_{max}=\dfrac{1}{n}\sum_{i=1}^{n}{\dfrac{(AW_{i})}{W_{i}}} λmax=n1i=1nWi(AWi)

其中,n为矩阵阶数,此处n=4。

求解步骤(以和积法求解权重为例)

  1. A W AW AW,其中 0.4705 = 1 ∗ 0.1176 + 1 4 ∗ 0.5175 + 2 ∗ 0.0611 + 1 3 ∗ 0.3038 0.4705=1*0.1176+\dfrac{1}{4}*0.5175+2*0.0611+\dfrac{1}{3}*0.3038 0.4705=10.1176+410.5175+20.0611+310.3038
    在这里插入图片描述

  2. A W W \dfrac{AW}{W} WAW,如 4.0016 = 0.4705 / 0.1176 4.0016=0.4705/0.1176 4.0016=0.4705/0.1176
    在这里插入图片描述

  3. 1 n s u m ( A W W ) \dfrac{1}{n}sum(\dfrac{AW}{W}) n1sum(WAW),此处 s u m ( A W W ) = 16.0621 sum(\dfrac{AW}{W})=16.0621 sum(WAW)=16.0621
    在这里插入图片描述

  4. 综上求得 λ m a x = 1 4 ∗ 16.0621 = 4.0155 \lambda_{max}=\dfrac{1}{4}*16.0621=4.0155 λmax=4116.0621=4.0155

2.3.2 求解CI、RI、CR值

  • 计算CI

C I = λ − n n − 1 = 4.0155 − 4 4 − 1 = 0.0052 CI=\dfrac{\lambda-n}{n-1}=\dfrac{4.0155-4}{4-1}=0.0052 CI=n1λn=414.01554=0.0052

  • 计算RI

根据查表,得知 R I RI RI为0.89

img

  • 计算CR

C R = C I R I = 0.0052 0.89 = 0.0058 CR=\dfrac{CI}{RI}=\dfrac{0.0052}{0.89}=0.0058 CR=RICI=0.890.0052=0.0058

2.3.3 一致性判断

CR = 0.0058 < 0.1,即通过一致性检验。

2.4 分别求解方案层权重向量及一致性检验

2.4.1 景色

  1. 构建判断矩阵
    在这里插入图片描述

  2. 计算权重向量以及一致性检验.(步骤如上文,为了简便文章,本次计算采用python代码,以和积法求解权重,下文将详细介绍)
    在这里插入图片描述

2.4.2 吃住

  1. 构建判断矩阵
    在这里插入图片描述

  2. 计算权重向量以及一致性检验.(步骤如上文,为了简便文章,本次计算采用python代码,以和积法求解权重,下文将详细介绍)
    在这里插入图片描述

2.4.3 价格

  1. 构建判断矩阵
    在这里插入图片描述

  2. 计算权重向量以及一致性检验.(步骤如上文,为了简便文章,本次计算采用python代码,以和积法求解权重,下文将详细介绍)
    在这里插入图片描述

2.4.4 人文

  1. 构建判断矩阵
    在这里插入图片描述

  2. 计算权重向量以及一致性检验.(步骤如上文,为了简便文章,本次计算采用python代码,以和积法求解权重,下文将详细介绍)
    在这里插入图片描述

2.5 计算各方案得分

综合得分 = s u m ( 单项得分 ∗ 对应指标权重 ) 综合得分=sum(单项得分*对应指标权重) 综合得分=sum(单项得分对应指标权重)
在这里插入图片描述

可以看出,南京得分0.5675为最高,最终方案应选择南京。

三、python 代码

3.1 和积法计算权重

import numpy as np
import pandas as pd

''' 层次分析法判断矩阵权重向量计算--和积法 '''
def get_w_anc(factors_matrix):
    # RI字典
    RI_dict = {
        1:0,
        2:0,
        3:0.52,
        4:0.89,
        5:1.12,
        6:1.26,
        7:1.36,
        8:1.41,
        9:1.46,
        10:1.49,
        11:1.52,
        12:1.54,
        13:1.56,
        14:1.58,
        15:1.59
    }
    
    # 矩阵阶数
    shape = factors_matrix.shape[0]

    # 按列求和
    column_sum_vector = np.sum(factors_matrix, axis=0)
    
    # 指标层判断矩阵归一化
    normalization_matrix = factors_matrix / column_sum_vector
    
    # 按行求归一化后的判断矩阵平均值,得到权重W
    W_vector = np.mean(normalization_matrix, axis=1)
    
    # 原判断矩阵 乘以 权重向量
    AW_vector = np.dot(factors_matrix, W_vector)
    
    # 原判断矩阵 ✖️ 权重向量 / 权重
    AW_w = AW_vector / W_vector
    
    # 求特征值
    lamda = sum(AW_w) / shape
    
    # 求CI值
    CI = (lamda - shape) / (shape - 1)
    
    # 求CR值
    CR = CI / RI_dict[shape]
    
    print("权重向量为:",list(W_vector))
    print("最大特征值:",lamda)
    print("CI值为:",CI)
    print("RI值为:",RI_dict[shape])
    print("CR值为:",CR)
    
    if CR < 0.1:
        print('矩阵通过一致性检验')
    else:
        print('矩阵未通过一致性检验')
    print("---------------------------")
    
    return W_vector

if __name__ == "__main__":

    # 指标层判断矩阵
    factors_matrix = np.array([
        [1,1/4,2,1/3],
        [4,1,8,2],
        [1/2,1/8,1,1/5],
        [3,1/2,5,1]
    ])

    # 景色
    view_matrix = np.array([
        [1,1/4,2],
        [4,1,8],
        [1/2,1/8,1]
    ])
    # 吃住
    board_matrix = np.array([
        [1,5,2],
        [1/5,1,1/2],
        [1/2,2,1]
    ])
    # 价格
    price_matrix = np.array([
        [1,1/3,2],
        [3,1,5],
        [1/2,1/5,1]
    ])
    # 人文
    humanity_matrix = np.array([
        [1,5,7],
        [1/5,1,2],
        [1/7,1/2,1]
    ])

    w_A = get_w_anc(factors_matrix)
    print("景色:")
    w_view = get_w_anc(view_matrix)
    print("吃住:")
    w_board = get_w_anc(board_matrix)
    print("价格:")
    w_price = get_w_anc(price_matrix)
    print("人文:")
    w_humanity = get_w_anc(humanity_matrix)
    
    # 将景色、吃住、价格、人文权重向量合并
    w_B = np.vstack((w_view, w_board,w_price,w_humanity))
    
    # 求出最终得分
    score = np.dot(w_A,w_B)
    print("最终得分向量:",score)
  • 运行结果
    在这里插入图片描述

3.2 方根法计算权重

这里只列出计算权重部分

  • 原指标层判断矩阵
# 指标层判断矩阵
factors_matrix = np.array([
    [1,1/4,2,1/3],
    [4,1,8,2],
    [1/2,1/8,1,1/5],
    [3,1/2,5,1]
])
  1. 求行乘积
# 求行乘积
array1 = factors_matrix.prod(axis=1, keepdims=True)
  1. 对乘积列每个元素开n次方(n为矩阵阶数,此处n=4)
n = 4
array2 = np.power(array1, 1/n)
  1. 对开方列求列占比,得到权重向量w
array2 / np.sum(array2)

3.3 python库 np.linalg.eig

# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(factors_matrix)

# 需要注意的是,对于一个nxn的矩阵,最多可能有n个特征值和特征向量,因此,需要挑选出最大的特征值进行一致性判断
# 找到最大特征值的索引
max_eigenvalue_index = np.argmax(eigenvalues)

# 提取最大特征值和对应的特征向量
max_eigenvalue = eigenvalues[max_eigenvalue_index]
max_eigenvector = eigenvectors[:, max_eigenvalue_index]

print("最大特征值:", max_eigenvalue)
print("对应的特征向量:", max_eigenvector)

在这里插入图片描述

  • 参考:层次分析法(AHP)步骤详解-哔哩哔哩
  • 参考:层次分析法原理及计算过程详解)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/405621.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

List集合之UML、特点、遍历方式、迭代器原理、泛型、装拆箱及ArrayList、LinkedList和Vector的区别

目录 ​编辑 一、什么是UML 二、集合框架 三、List集合 1.特点 2.遍历方式 3.删除 4.优化 四、迭代器原理 五、泛型 六、装拆箱 七、ArrayList、LinkedList和Vector的区别 ArrayList和Vector的区别 LinkedList和Vector的区别 一、什么是UML UML&#xff08;Unif…

大数据-数据可视化-环境部署vue+echarts+显示案例

文章目录 一、安装node.js1 打开火狐浏览器,下载Node.js2 进行解压3 配置环境变量4 配置生效二、安装vue脚手架1 下载vue脚手架,耐心等待。三、创建vue项目并启动1 创建2 启动四、下载echarts.js与axios.js到本地。五、图表显示demo【以下所有操作均在centos上进行】 一、安…

详解编译和链接!

目录 1. 翻译环境和运行环境 2. 翻译环境 2.1 预处理 2.2 编译 2.3 汇编 2.4 链接 3. 运行环境 4.完结散花 悟已往之不谏&#xff0c;知来者犹可追 创作不易&#xff0c;宝子们&#xff01;如果这篇文章对你们…

老杨说运维 | 运维大数据价值探索

文末附有视频 伴随第六届双态IT乌镇用户大会的圆满完成&#xff0c;擎创科技“一体化数智管理和大模型应用”主题研讨会也正式落下了帷幕。 云原生转型正成为很多行业未来发展战略&#xff0c;伴随国家对信创数字化要求的深入推进&#xff0c;面对敏稳共存这一近年出现的新难…

HTTP概要

文章目录 什么是HTTP?URL的结构请求报文结构请求方法GETHEADPOSTPUTDELETETRACEOPTIONSCONNECTPATCH解释 请求头字段 响应报文结构响应状态响应头字段 HTTP会话3次握手无状态协议 什么是HTTP? HTTP&#xff0c;即Hypertext Transfer Protocol(超文本传输协议) 它是一个”请…

PostMan使用自带js库base64编码、sha256摘要、环境变量的使用

目录 1、环境变量的使用2、base64编码、sha256摘要、以及脚本的使用3、脚本代码 在请求调试接口的过程中&#xff0c;因为要使用大量相同的参数&#xff0c;使用变量的方式能很大程度上减轻接口调用的工作量 版本说明&#xff1a;Postman for Windows&#xff0c;Version&#…

ant-design-charts 对带缩略轴柱状图 根据数据自定义列处理, 以颜色为例

摘要 本文主要对ant-design-charts中带缩略柱状图进行自定义列处理 ant-design-charts版本&#xff1a;1.4.2 1、定义数据 const data1 [{"a": "七台河","b": 52827.32,c: 2},{"a": "万县","b": 20000,c: 1},…

【Java EE初阶二十四】servlet的深入理解

1. Servlet API 的学习 下面主要学习这三个类&#xff0c;就已经可以完成 Servlet 的大部分开发了&#xff1b; 1. Httpservlet 2. HttpServletRequest 3. HttpServletResponse 2. Httpservlet的学习 2.1 Httpservlet在tomcat的工作原理 写一个 Servlet 代码&#xff0c;往往都…

【达梦数据库】数据库的方言问题导致的启动失败

问题场景 在项目中采用了hibernate &#xff0c;连接数据库原本为ORACLE&#xff0c;后续打算改造为国产数据库 达梦 链接配置&#xff1a; # 达梦写法&#xff0c; index:driver-class-name: dm.jdbc.driver.DmDriverjdbc-url: jdbc:dm://192.168.220.225:5236/IDX4username:…

回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测

回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测 目录 回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测预测效果基本描述程序设计参考资料 预测效果…

YOLOv5改进 | Conv篇 | 利用YOLOv9的GELAN模块替换C3结构(附轻量化版本 + 高效涨点版本 + 结构图)

一、本文介绍 本文给大家带来的改进机制是利用2024/02/21号最新发布的YOLOv9其中提出的GELAN模块来改进YOLOv5中的C3,GELAN融合了CSPNet和ELAN机制同时其中利用到了RepConv在获取更多有效特征的同时在推理时专用单分支结构从而不影响推理速度,同时本文的内容提供了两种版本一…

安全生产:AI视频智能分析网关V4如何应用在企业安全生产场景中?

随着科技的不断进步&#xff0c;视频智能分析技术在安全生产领域中的应用越来越广泛。这种技术通过计算机视觉和人工智能算法&#xff0c;可以对监控视频进行自动分析和处理&#xff0c;以实现多种功能&#xff0c;如目标检测、行为识别、异常预警等。今天我们以TSINGSEE青犀AI…

【服务器数据恢复】通过reed-solomon算法恢复raid6数据的案例

服务器数据恢复环境&#xff1a; 一台网站服务器中有一组由6块磁盘组建的RAID6磁盘阵列&#xff0c;操作系统层面运行MySQL数据库和存放一些其他类型文件。 服务器故障&#xff1a; 该服务器在工作过程中&#xff0c;raid6磁盘阵列中有两块磁盘先后离线&#xff0c;不知道是管理…

216972-99-5,Texas Red-X NHS ester,mixed isomers,生物标记反应中常用的试剂

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;216972-99-5&#xff0c;Texas Red-X NHS ester,mixed isomers&#xff0c;德州红-X 活化酯 一、基本信息 【产品简介】&#xff1a;The excitation peak of Texas Red is located at 589 nanometers, which allows…

《TCP/IP详解 卷一》第4章 地址解析协议ARP

目录 4.1 引言 4.2 一个例子 4.3 ARP缓存 4.4 ARP帧格式 4.5 ARP例子 4.6 ARP缓存超时 4.7 代理ARP 4.8 免费ARP和地址冲突检测 4.9 ARP命令 4.10 使用ARP设置嵌入式设备IPv4地址 4.11 与ARP相关攻击 4.12 总结 4.1 引言 地址解析&#xff1a; IPv4&#xff1a;AR…

Linux的ACL权限以及特殊位和隐藏属性

前言&#xff1a; ACL是什么&#xff1f; ACL&#xff08;Access Control List&#xff09;是一种权限控制机制&#xff0c;用于在Linux系统中对文件和目录进行细粒度的访问控制。传统的Linux权限控制机制基于所有者、所属组和其他用户的三个权限类别&#xff08;读、写、执行…

Intel处理器虚拟化技术VT-x86下实现小型虚拟化框架(1)

一.前言 我一直觉得&#xff0c;学习计算机中的一门新技术&#xff0c;一定要从历史去了解他的全貌。这样有利于我们了解事情的来龙去脉和发展的过程。一上来直接接触新兴事物&#xff0c;很容易陷入不知从何下手的困境。不了解历史发展&#xff0c;就不明白前人的一些操作。因…

【无刷电机学习】各种电机优势比较

目录 0 参考出处 1 有刷与无刷比较 2 交流与直流比较 3 内转子与外转子比较 4 Delta型与Y型定子绕向比较 5 低压BLDC的一些优点 0 参考出处 【仅作自学记录&#xff0c;不出于任何商业目的。如有侵权&#xff0c;请联系删除&#xff0c;谢谢&#xff01;】 维基百科…

2024 CKS 题库 | 11、AppArmor

不等更新题库 CKS 题库 11、AppArmor Context: APPArmor 已在 cluster 的工作节点node02上被启用。一个 APPArmor 配置文件已存在&#xff0c;但尚未被实施。 Task: 在 cluster 的工作节点node02上&#xff0c;实施位于 /etc/apparmor.d/nginx_apparmor 的现有APPArmor 配置…

opencv判断二值的情况

目的 先说说理论&#xff1a; 什么叫图像的二值化&#xff1f;二值化就是让图像的像素点矩阵中的每个像素点的灰度值为0&#xff08;黑色&#xff09;或者255&#xff08;白色&#xff09;&#xff0c;也就是让整个图像呈现只有黑和白的效果。在灰度化的图像中灰度值的范围为0…