概率论和随机过程的学习和整理20:条件概率我知道,但什么是条件期望?可用来解决递归问题

目录

1 目标问题: 什么是条件期望? 条件期望有什么用?

2 条件期望,全期望公式

3 条件期望,全期望公式 和 条件概率,全概率公式的区别和联系

3.1 公式如下

3.2 区别和联系

3.3 概率和随机过程

4 有什么用:---可以解决很多递归的问题

4.1 使用前有个前提:界定清楚你要求的随机变量的目标和类型

4.1.1 求的是次数,还是数量?

4.1.2 确定你要求的目标变量

4.2 例题1:计算出去的 时间= 步数 =次数,属于这一类问题

4.3 例题2:求次数,计算几何分布的期望

4.4 例题3:求个数,适合二项分布求成功的次数的期望

5 条件期望全期望公式和 马尔可夫转移 区别


1 目标问题: 什么是条件期望? 条件期望有什么用?

   这次先不说目标,先引用一个小学数学题作为开头

Q:假设已知1班平均分是93,2班平均分是95,那么两个班的平均分怎么算?

错误算法: (93+95)/2=94

  • 除非两个班的学生数量一样,否则就是错的
  • 这个不能用简单算术平均,得用加权平均

正确算法

  • 假设1班学生数量n1,平均分A1=93,假设2班学生数量n2,平均分A2=95
  • 根据平均分的定义
  • A0 = 总分数/总人数
  •     = (A1*n1 + A2*n2)/(n1+n2)
  •     = n1/(n1+n2)*A1 + n2/(n1+n2)*A2
  •     = 系数1*A1+系数2*A2
  •     = 人数权重比例1*A1+人数权重比例2*A2
  • 而权重 = 本班人数/ sum(所有班级人数和)

从这里引出了一个问题

Q1: 我们想知道总体的平均值,当然可以直接用总体的数计算,比如A0 = 总分数/总人数。但是如果我们已经知道了 总体的每个部分的平均值,是否可以根据这些算出总体的平均值呢?

A1: 答案是可以的,前面这个例子已经看到是可以的,总体均值= Σ部分均值*权重比例。

Q2: 接着问,如果这个总体不是确定的,而是一个随机变量,比如我们要求的是:这个随机变量的期望呢?

A2: 那么权重比例就变成了随机变量的概率,其实这个也就是 条件期望和全期望公式的内容

因此,引出了我们要讨论的主题:

  • 类比: 总体均值= Σ部分均值*权重比例
  • 全期望可以这么看
  • E(X) = ΣPi*E(X|Yi)      和上面是同一个表达方式
  • E(X) =E(E(X|Y))
  • E(X) = P1*E(X|Y1) + ..... +Pk*E(X|Yk) = ΣPi*E(X|Yi)
  • E(X) = E(E(X|Y)) = ΣPI*E(X|Yi) = P1*E(X|Y1) + ..... +Pk*E(X|Yk)  ,其中i属于(1,k)

2 条件期望,全期望公式

下面不同写法的概念是不同的

  • step1:  E(X) 是一个具体的数,随机变量的数学期望=随机变量的(概率)加权平均值=具体的数
  • step2:  因为在Y=y1的前提下,X还是有可能有几种情况,假设也是x1,x2...xk所以条件期望 E(X|Y=y1) = Σxi*P(xi|Y=y1) = x1*P(x1|Y=y1) +x2*P(x2|Y=y1) +...+xk*P(xk|Y=y1)
  • step3:  而对于随机变量X,Y还有多个取值y1,y2....yj,比如 E(X|Y=y1) 本身还对应着一个概率 Pj.  因此可以求期望 E(E(X|Y)) =ΣPI*E(X|Yj) = P1*E(X|Y1) + P2*E(X|Y2) +.....+Pj*E(X|Yj) 而实际上可证明,E(E(X|Y))=E(X)
  • step4: 所以全期望公式   E(X) = E(E(X|Y)) = ΣPI*E(X|Yi) = P1*E(X|Y1) + P2*E(X|Y2) + ..... +Pj*E(X|Yj)  ,其中i属于(1,j)

看下面的图理解

图是知乎的,参考   zhuanlan.zhihu.com/p/612709393

3 条件期望,全期望公式 和 条件概率,全概率公式的区别和联系

3.1 公式如下

  • 条件概率:     P(A|B) =  P(AB) / P(B)
  • 全概率公式:  P(A) =  P(AB1) * P(B1) +P(AB2) * P(B2) + ......+P(ABn) * P(Bn)
  • 条件期望:     E(X|Y=y1) =E(X|y1) = Σxi*P(xi|Y=y1)
  • 全期望公式: E(X) = E(E(X|Y)) = ΣPj*E(X|Yj) = P1*E(X|Y1) + ..... +Pj*E(X|Yj)  ,其中j属于(1,k)

3.2 区别和联系

  • 条件概率,全概率公式,是用来求概率的
  • 条件期望,全期望公式,是用来求各种 随机变量的期望值,而不是概率,比如,合成的平均次数,合成的目标的平均数量... ... 等等。

3.3 概率和随机过程

  • 概率一般是求 瞬时/切面的发生可能,主要关注概率
  • 随机过程,一般是求一个时间过程内的情况,或一个时间过程后的情况,可以关注概率,次数,数量。。。等等

4 有什么用:---可以解决很多递归的问题

4.1 使用前有个前提:界定清楚你要求的随机变量的目标和类型

4.1.1 求的是次数,还是数量?

条件期望和全期望公式,之所以不如条件概率和全概率公式那么好理解,是因为需要仔细理解好,要分析的问题里,目标--随机变量,到底是什么?

  • 是希望知道多次随机之后,随机变量的数量?       
  • 是希望知道多次随机后达到某个状态所用的次数?   有点类几何分布
  • 等等

4.1.2 确定你要求的目标变量

  • 比如1个A有可能变成A,B,C,D对于的概率是0.5,0.2,0.2,0.1
  • 那么如果我们有100个A,那么想问可以生成多少个D?
  • 那么如果我们有100个A,那么想问可以生成多少个C?
  • 如果我想合成1个D,需要多少次呢?
  • 这都是不同的问题

4.2 例题1:计算出去的 时间= 步数 =次数,属于这一类问题

  • 一个矿工被困矿井里,面前可以打开3个门,均等概率,1个门回到外面花费3小时,1个门回到现在地方花费5小时,1个门回到现在地方花费7小时,求问矿工回到外面平均需要时间?
  • 设置X为矿工出去要花的时间
  • E(X) = 1/3* 3+  1/3* (E(X)+5)+1/3* (E(X)+7)
  • 3 E(X) = 3+  E(X)+5 +E(X)+7
  • E(X) = 15

4.3 例题2:求次数,计算几何分布的期望

如果丢硬币

假设正面成功概率p, 反面失败概率1-p,问直到成功1次的次数是多少?(同几何分布)

可以直接用几何分布的概率和期望公式计算

  • 几何分布概率:         pdf=p*(1-p)^n
  • 几何分布期望次数: E(X)=1/p

也可以用 条件期望和全期望公式

令n为第1次出现正面的次数,而Y表示单次实验的正反情况

E(N) =P*E(N|Y=1) + (1-P)*E(N|Y=0)

  • 显然 E(N|Y=1) =1,因为既然 Y=1了那就成功了,那么次数N也就=1
  • 而因为Y=0了,已经多了1次,而每次试验都是独立了又开始重新试验E(N)所以E(N|Y=0) =1+E(N)

这就是递归的规律

  • E(N) =P*1 + (1-P)*(1+E(N))
  • E(N) =P +(1-P)+ (1-P)*E(N)
  • E(N) =1+ (1-P)*E(N)
  • E(N) =1/p

这也是一个递归的问题

4.4 例题3:求个数,适合二项分布求成功的次数的期望

Q: 如果丢硬币

假设正面成功概率p, 反面失败概率1-p,问直到丢100次,平均有几次是成功呢?(多少个正面?)

A: 只要 p不等于0,且因为每次丢硬币都是独立的,理论上每次都可能是正面/反面,所以100次试验,正面的次数可能是(0,100)

那么平均会出现几次正面呢?

  • 不适合几何分布求最后1次成功的次数
  • 而二次分布看起来是合适的,二项分布的概率,是求成功K次的概率,而二项分布的期望是np, 是k所有不同取值时*对应概率求和,E(X)=np 正好就是成功k次的平均次数。
  • 也可以用 条件期望和全期望公式

而Y表示单次实验的正反情况

一次试验时,可能是正面的个数

E(N) =P*E(N|Y=1) + (1-P)*E(N|Y=0) 

E(N) =P*1 + (1-P)*0

  •  如果E(N|Y=1) ,因为既然 Y=1了那就成功了,那么这就有了1个正面的个数1
  •  如果E(N|Y=0) ,那就是这次生成了反面,没有生成正面,那么正面的个数就是0

这就是递归的规律

  • 先看单次试验的
  • E(N) =P*1 + (1-P)*0
  • E(N) =P 
  • 而N次试验是独立的
  • 所以
  • n*E(N)=np

5 条件期望全期望公式和 马尔可夫转移 区别

总结1:

  • 一般来说,求次数,求个数都可以用条件期望等。
  • 而马尔可夫链一般是用来求概率的,当然也可以来求平均次数

总结2:

  • 条件期望,全期望公式,比马尔可夫链的适用性更广,
  • 马尔可夫链的要求比较严格,但是对适合处理的情况,处理更快更方便。
  • 马尔可夫链只关注 n-1状态和n状态之间的关系
  • 马尔可夫链一般适合1个东西进行多状态之间切换,一般不适合多变1等合成问题
  • 一般要求各个状态之间是等权重的,步长相等,不能被扭曲。而且如果状态数量太大,好像马尔可夫链计算也很麻烦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/40486.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

简单认识MySQL数据库索引

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、索引的概念1、简介2、作用3、索引的副作用:4、创建索引的原则依据5、索引的分类 二、索引的增删改查1.创建索引(1)创建普通索…

VoIP监控工具有什么作用

VoIP 监控工具利用思科的 IPSLA 技术生成合成流量并监控客户端体验的呼叫质量。与被动监控VoIP指标相反,IPSLA技术允许IT管理员主动并在潜在问题发生之前检测到它们,这使组织能够轻松遵守严格的SLA指标。 思科 IPSLA 技术在两台设备之间创建流量&#x…

使用semanage管理SELinux安全策略

semanage命令用于管理SELinux的策略,格式为“semanage [选项] [文件]”。 SELinux服务极大地提升了Linux系统的安全性,将用户权限牢牢地锁在笼子里。semanage命令可以设置文件、目录的策略,还可以管理网络端口、消息接口。 常用参数&#xf…

240. 搜索二维矩阵 II

题目描述&#xff1a; 主要思路&#xff1a; 利用矩阵中的单调性进行搜索。 class Solution { public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int nmatrix.size(),mmatrix[0].size();int in-1,j0;while(i>0&&j<m){if(m…

架构训练营学习笔记:4-2 存储架构模式之复制架构

高可用的关键指标 问题&#xff1a;分为故障跟灾难。不是有了多活架构就不在用复制架构 &#xff0c;还是之前的合适原则&#xff1a;多活架构的技术复杂度 跟成本都比复制架构高。 高可用的关键指标 恢复时间目标(RecoveryTimeObjective&#xff0c;RTO)指为避免在灾难发生后…

测试基础 Android 应用测试总结

目录 启动&#xff1a; 功能介绍&#xff0c;引导图&#xff0c;流量提示等&#xff1a; 权限&#xff1a; 文件错误 屏幕旋转&#xff1a; 流量&#xff1a; 缓存&#xff08;/sdcard/data/com.your.package/cache/&#xff09;&#xff1a; 正常中断&#xff1a; 异…

jupyter notebook更换虚拟环境(内核)

jupyter notebook更换虚拟环境&#xff08;内核&#xff09; 创建一个新的虚拟环境 # stk_env 虚拟环境的名字&#xff0c;任取。 conda create -n stkenv python3.9激活虚拟环境 conda activate stkenv安装ipykernel # 为该虚拟环境&#xff0c;安装内核。 conda install -c a…

【Spring core学习三】对象装配:获取Bean对象的四种方式

目录 对象装配的四种方式 &#x1f337;1、Autowired属性注入&#xff08;使用最多&#xff09; &#x1f337;2、Setter注入 &#x1f337;3、构造函数注入 &#x1f337;4、Resource&#xff1a;另⼀种注⼊关键字 对象装配的四种方式 对象装配&#xff1a;获取bean对象也…

linux之Ubuntu系列(-)常见指令 重定向

Ubuntu 中文 版本 注意点 通过修改语言改成英文 在终端录入&#xff1a;export LANGen_US 在终端录入&#xff1a;xdg-user-dirs-gtk-update 单用户和多用户 命令格式 command [-选项] [参数] –查看命令的帮助 命令 --help man 命令 |操作键| 功能| |空格键|-显示手册的下…

B070-项目实战-用户模块--手机注册

目录 用户模块需求分析静态网站部署与调试两种前端项目的部署两种前端项目的调试(热部署)创建静态web项目 注册分析与设计分析需求设计 界面设计&#xff08;ui&#xff09;设计表&#xff08;后台&#xff09; 流程设计&#xff08;后台&#xff09;三范式表设计流程设计 相关…

Appium+python自动化(十二)- Android UIAutomator终极定位凶器(超详解)

简介 乍眼一看&#xff0c;小伙伴们觉得这部分其实在异性兄弟那里就做过介绍和分享了&#xff0c;其实不然&#xff0c;上次介绍和分享的大哥是uiautomatorviewer&#xff0c;是一款定位工具。今天介绍的是一个java库&#xff0c;提供执行自动化测试的各种API。 Android团队在4…

SPSS中级统计--S05-5多个样本率的卡方检验及两两比较

小伙伴们&#xff0c;今天我们学习SPSS中级统计--多个样本率的卡方检验及两两比较。 例1、2 C列联表资料 上期我们学习了双向无序RC表资料&#xff08;c2&#xff09;的检验&#xff0c;案例如下&#xff0c;比较不同污染地区的动物畸形率是否有差异&#xff1f; H0&#xff…

旅游管理系统的设计与实现(论文+源码)_kaic

摘 要 旅游业走过了改革开放&#xff0c;到现在依旧蓬勃发展。但是放眼国际社会&#xff0c;我们在旅游业发展的深度和广度上所做的努力还远远不够。在中国&#xff0c;旅游业也将成为经济崛起中的重要一环。目前&#xff0c;我们生活在一个信息时代里。无论是工作&#xff0c;…

uniapp动态获取列表中每个下标的高度赋值给另一个数组(完整代码附效果图)

uniapp实现动态获取列表中每个下标的高度&#xff0c;赋值给另一个数组。 先看效果图&#xff1a; 完整代码&#xff1a; <template><div class""><div class"">我是A列表&#xff0c;我的高度不是固定的</div><div class&qu…

Docker使用总结

Docker 1.什么是 Docker 官网的介绍是“Docker is the world’s leading software container platform.” 官方给Docker的定位是一个应用容器平台。 Docker 是一个容器平台的领导者 Docker 容器平台 Docker 应用容器平台 application项目 Mysql Redis MongoDB ElasticSeacrh …

我国版式文档格式OFD前端WEB展示之EasyOFD

EasyOFD an ofd file web shower 一个在web端展示ofd文件的控件&#xff0c;该控件基于CANVAS绘制。 该控件使用了以下外部程序 1&#xff09;jszip&#xff1a;解决解压文件。 2&#xff09;x2js: 解决XML文件到JS转换 3&#xff09;easyjbig2: 解决ofd内部使用jb2文件存储的…

java项目之足球赛会管理系统(ssm+mysql+jsp)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的足球赛会管理系统。技术交流和部署相关看文章末尾&#xff01; 项目地址&#xff1a; https://download.csdn.net/download/sinat_26552841…

什么是渲染?一文看懂,萌新赶紧收藏码住!

十四五规划提出“加快数字化发展&#xff0c;建设数字中国”&#xff0c;数字技术的快速发展&#xff0c;从起初的内容创建到最终的效果呈现&#xff0c;都离不开渲染技术。目前&#xff0c;渲染技术被广泛应用于教育、医疗、影视动画、建筑设计等多个领域。它能有效满足用户对…

docker基础1——架构组成、安装配置

文章目录 一、发展起源1.1 传统虚拟化与容器虚拟化1.2 docker底层核心技术1.2.1 命名空间1.2.2 控制组 1.3 docker工作方式1.4 docker容器编排1.5 docker优劣势1.6 docker架构组成 二、yum安装docker三、配置docker加速器 一、发展起源 背景了解&#xff1a; 容器是内核里的一项…

【Python】PyCharm中调用另一个文件的函数或类

&#x1f389;欢迎来到Python专栏~PyCharm中调用另一个文件的函数或类 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒&#x1f379; ✨博客主页&#xff1a;小夏与酒的博客 &#x1f388;该系列文章专栏&#xff1a;Python学习专栏 文章作者技术和水平有限&#xff0c;如果文中出现错误&…