【深度学习】微调通义千问模型:LoRA 方法,微调Qwen1.8B教程,实践

官网资料:
https://github.com/QwenLM/Qwen/blob/main/README_CN.md

文章目录

    • 准备数据
    • 运行微调
      • 设置网络代理
      • 启动容器
      • 执行 LoRA 微调
        • 修改 finetune/finetune_lora_single_gpu.sh
        • 运行微调
    • 执行推理

在本篇博客中,我们将介绍如何使用 LoRA 方法微调通义千问模型,以适应特定任务或数据。首先,我们将简要介绍准备数据和运行微调所需的步骤,然后详细说明如何执行 LoRA 微调。

准备数据

首先,您需要准备您的训练数据,并将其存储为 JSON 文件。每个样本都应该是一个字典,包含 id 和对话信息。以下是一个示例:

[
  {
    "id": "identity_0",
    "conversations": [
      {
        "from": "user",
        "value": "你好"
      },
      {
        "from": "assistant",
        "value": "我是一个语言模型,我叫通义千问。"
      }
    ]
  }
]

运行微调

设置网络代理

在开始微调之前,请确保设置好网络代理,以确保能够顺利访问所需资源。

export http_proxy=http://10.20.31.16:10811
export https_proxy=http://10.20.31.16:10811

启动容器

您可以通过以下命令启动容器:

docker run --gpus all -e LANG=C.UTF-8 -it zhenhengdong/nlp:qwenllm_cu121_V1_finetuning bash

执行 LoRA 微调

我们将使用 LoRA 方法进行微调。首先,修改 finetune_lora_single_gpu.sh 脚本以配置微调参数。

修改 finetune/finetune_lora_single_gpu.sh
vim finetune/finetune_lora_single_gpu.sh

以下是脚本的修改说明:

  • 设置 CUDA 设备的最大连接数为 1。
  • 定义了模型路径和数据路径两个变量,用户可以通过命令行参数指定,否则将使用默认值。
  • 使用 CUDA_VISIBLE_DEVICES 指定使用的 GPU 设备编号。
  • 调用 Python 脚本 finetune.py 进行微调,设置了微调所需的各种参数,包括模型名称、数据路径、微调 epoch 数等。
#!/bin/bash
export CUDA_DEVICE_MAX_CONNECTIONS=1

MODEL="Qwen/Qwen-1_8B-Chat" # 如果您不想直接从 huggingface 加载模型,请设置路径
DATA="/data/shared/Qwen/data.json" # 请指定训练数据的路径

function usage() {
    echo '
Usage: bash finetune/finetune_lora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
'
}

while [[ "$1" != "" ]]; do
    case $1 in
        -m | --model )
            shift
            MODEL=$1
            ;;
        -d | --data )
            shift
            DATA=$1
            ;;
        -h | --help )
            usage
            exit 0
            ;;
        * )
            echo "Unknown argument ${1}"
            exit 1
            ;;
    esac
    shift
done

export CUDA_VISIBLE_DEVICES=2

python finetune.py \
  --model_name_or_path $MODEL \
  --data_path $DATA \
  --bf16 True \
  --output_dir output_qwen \
  --num_train_epochs 5 \
  --per_device_train_batch_size 2 \
  --per_device_eval_batch_size 1 \
  --gradient_accumulation_steps 8 \
  --evaluation_strategy "no" \
  --save_strategy "steps" \
  --save_steps 1000 \
  --save_total_limit 10 \
  --learning_rate 3e-4 \
  --weight_decay 0.1 \
  --adam_beta2 0.95 \
  --warmup_ratio 0.01 \
  --lr_scheduler_type "cosine" \
  --logging_steps 1 \
  --report_to "none" \
  --model_max_length 512 \
  --lazy_preprocess True \
  --gradient_checkpointing \
  --use_lora

# 如果您使用的是 fp16 而不是 bf16,请使用 deepspeed
# --fp16 True --deepspeed finetune/ds_config_zero2.json
运行微调

直接执行即可:

bash finetune/finetune_lora_single_gpu.sh

通过以上步骤,您就可以成功运行 LoRA 方法对通义千问模型进行微调了。

训练结束后,adapter部分的参数就存这里:

在这里插入图片描述

执行推理

与全参数微调不同,LoRA和Q-LoRA的训练只需存储adapter部分的参数。假如你需要使用LoRA训练后的模型,你需要使用如下方法。假设你使用Qwen1.8B训练模型,你可以用如下代码读取模型:

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True)

from peft import AutoPeftModelForCausalLM

model = AutoPeftModelForCausalLM.from_pretrained(
    "/data/shared/Qwen/output_qwen", # path to the output directory
    device_map="auto",
    trust_remote_code=True
).eval()

# 第一轮对话 1st dialogue turn
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。

# 第二轮对话 2nd dialogue turn
response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。
# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。
# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。
# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。
# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。
# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。

# 第三轮对话 3rd dialogue turn
response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/404504.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【动态规划专栏】背包问题:分割等和子集

本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小…

百面嵌入式专栏(经验篇)如何在面试中介绍自己的项目经验

文章目录 1. 在面试前准备项目描述,别害怕,因为面试官什么都不知道2. 准备项目的各种细节,一旦被问倒了,就说明你没做过3.不露痕迹地说出面试官爱听的话4.一定要主动,面试官没有义务挖掘你的亮点5.一旦有低级错误,可能会直接出局6.引导篇:准备些加分点,在介绍时有意提到…

fly-barrage 前端弹幕库(1):项目介绍

fly-barrage 是我写的一个前端弹幕库,由于经常在 Bilibili 上看视频,所以对网页的弹幕功能一直蛮感兴趣的,所以做了这个库,可以帮助前端快速的实现弹幕功能。 项目官网地址:https://fly-barrage.netlify.app/&#xff…

Java技术驱动,学生交流管理更高效

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

基于数字双输入的超宽带(0.7-3.1GHz)Doherty功率放大器设计-从理论到ADS版图

基于数字双输入的超宽带(0.7-3.1GHz)Doherty功率放大器设计-从理论到ADS版图 参考论文: 高效连续型射频功率放大器研究 假期就要倒计时啦,估计是寒假假期的最后一个博客,希望各位龙年工作顺利,学业有成。 全部工程下载:基于数字…

基于springboot+vue的大创管理系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

flink内存管理,设置思路,oom问题,一文全

flink内存管理 1 内存分配1.1 JVM 进程总内存(Total Process Memory)1.2 Flink 总内存(Total Flink Memory)1.3 JVM 堆外内存(JVM Off-Heap Memory)1.4 JVM 堆内存(JVM Heap Memory)…

【Django开发】0到1开发美多shop项目:Celery短信和用户注册。全md文档笔记(附代码,已分享)

本系列文章md笔记(已分享)主要讨论django商城项目开发相关知识。本项目利用Django框架开发一套前后端不分离的商城项目(4.0版本)含代码和文档。功能包括前后端不分离,方便SEO。采用Django Jinja2模板引擎 Vue.js实现…

LeetCode | 整数反转 C语言

Problem: 7. 整数反转 文章目录 思路解题方法Code结果 思路 运算部分 while(x > 0) {y x % 10;y * 10;x / 10; } y / 10;对于大于32位的数要用long int类型的变量保存用pow算-2的31次方和2的31次方-1。 解题方法 由思路得 Code int reverse(long int x){long int y …

LVGL:布局

一、Flex布局(弹性布局) 1.1、概述 Flex布局具备以下特点: 方向灵活:可以控制子元素沿水平方向(row 默认)或垂直方向(column)排列。自动填充:子元素可以按照比例分配空…

mysql-多表查询-内连接

一、简介 MySQL中的内连接(INNER JOIN)是一种多表查询的方式,它返回两个表中满足连接条件的记录。这意味着,只有当一个记录在两个表中都存在时,它才会出现在结果集中。 二、内连接查询语法 (1&#xff0…

mybatis常用标签

一.定义sql语句 1.select 标签 属性介绍: (1)id :唯一的标识符. (2)parameterType:传给此语句的参数的全路径名或别名 例:com.test.poso.User或user (3)resultType :语句返回值类型或别名。注意&#xff…

【Java面试】MQ(Message Queue)消息队列

目录 一、MQ介绍二、MQ的使用1应用解耦2异步处理3流量削峰4日志处理5消息通讯三、使用 MQ 的缺陷1.系统可用性降低:2.系统复杂性变高3.一致性问题四、常用的 MQActiveMQ:RabbitMQ:RocketMQ:Kafka:五、如何保证MQ的高可用?ActiveMQ:RabbitMQ:RocketMQ:Kafka:六、如何保…

transformer 最简单学习1 输入层embeddings layer,词向量的生成和位置编码

词向量的生成可以通过嵌入层(Embedding Layer)来完成。嵌入层是神经网络中的一种常用层,用于将离散的词索引转换为密集的词向量。以下是一个典型的步骤: 建立词表:首先,需要从训练数据中收集所有的词汇&…

uniapp实现全局悬浮框

uniapp实现全局悬浮框(按钮,页面,图片自行设置) 可拖动 话不多说直接上干货 1,在components新建组件(省去了每个页面都要引用组件的麻烦) 2,实现代码 <template><view class"call-plate" :style"top: top px;left: left px;" touchmove&quo…

ubuntu使用LLVM官方发布的tar.xz来安装Clang编译器

ubuntu系统上的软件相比CentOS更新还是比较快的&#xff0c;但是还是难免有一些软件更新得不那么快&#xff0c;比如LLVM Clang编译器&#xff0c;目前ubuntu 22.04版本最高还只能安装LLVM 15&#xff0c;而LLVM 18 rc版本都出来了。参见https://github.com/llvm/llvm-project/…

React 模态框的设计(三)拖动组件的完善

我在上次的Draggable组件的设计中给了一个简化的方法&#xff0c;今天我来完善一下这个组件&#xff0c;可用于任何可移动组件的包裹。完善后的效果如下所示&#xff1a; 这个优化中&#xff0c;增加了一个注目的效果&#xff0c;还增加了触发可拖动区域的指定功能&#xff0c;…

Sora - 探索AI视频模型的无限可能-官方报告解读与思考

一、引言 最近SORA火爆刷屏&#xff0c;我也忍不住找来官方报告分析了一下&#xff0c;本文将深入探讨OpenAI最新发布的Sora模型。Sora模型不仅仅是一个视频生成器&#xff0c;它代表了一种全新的数据驱动物理引擎&#xff0c;能够在虚拟世界中模拟现实世界的复杂现象。本文将重…

【更新】高考志愿填报系统功能更新啦

近期我们对金秋志愿高考志愿填报系统&#xff0c;进行了部分功能升级优化&#xff0c;让功能更符合用户的使用需求&#xff0c;大大提升用户体验感&#xff0c;快来了解一下金秋志愿的变化吧&#xff01; 一、新增测评管理-题目类型多样&#xff0c;支持单选和多选&#xff0c…

2024移动应用的发展趋势,开发者如何抢占变现先机?

2024年对移动应用市场将是变革之年&#xff0c;社交媒体变现方式的瞬息万变&#xff0c;到人工智能的快速崛起&#xff0c;移动应用市场的换代速度逐渐加快&#xff0c;一些新的机遇也在出现。 data.ai推出的2024全球移动市场预测&#xff1a; •TikTok将打破应用商店支出的所…