分布式缓存
-- 基于Redis集群解决单机Redis存在的问题
单机的Redis存在四大问题:
1.Redis持久化
Redis有两种持久化方案:RDB持久化、AOF持久化
1.1.RDB持久化
什么是RDB持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。
RDB的缺点
-
RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
-
fork子进程、压缩、写出RDB文件都比较耗时
1.1.1.执行时机
RDB持久化在四种情况下会执行:
-
执行save命令
-
执行bgsave命令
-
Redis停机时
-
触发RDB条件时
1)save命令
执行下面的命令,可以立即执行一次RDB:
save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。
2)bgsave命令
下面的命令可以异步执行RDB:
这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。
3)停机时
Redis停机时会执行一次save命令,实现RDB持久化。
4)触发RDB条件
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1
save 300 10
save 60 10000
RDB的其它配置也可以在redis.conf文件中设置:
# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes
# RDB文件名称
dbfilename dump.rdb
# 文件保存的路径目录
dir ./
1.1.2.RDB原理
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
-
当主进程执行读操作时,访问共享内存;
-
当主进程执行写操作时,则会拷贝一份数据,执行写操作。
1.2.AOF持久化
1.2.1.AOF原理
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
1.2.2.AOF配置
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配:
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
三种策略对比:
1.2.3.AOF文件重写
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
如图,AOF原本有三个命令,但是set num 123 和 set num 666
都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。
所以重写命令后,AOF文件内容就是:mset name jack num 666
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
1.3.RDB与AOF对比
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
2.Redis主从
2.1.搭建主从架构
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
具体搭建流程参考课前资料《Redis集群.md》
2.2.主从数据同步原理
2.2.1.全量同步
主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:
这里有一个问题,master如何得知salve是第一次来连接呢??
有几个概念,可以作为判断依据:
-
Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
-
offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和 offset,master才可以判断到底需要同步哪些数据。
因为slave原本也是一个master,有自己的 replid 和 offset,当第一次变成 slave,与 master 建立连接时,发送的 replid 和 offset 是自己的 replid 和 offset。
master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。
master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。
如图:
完整流程描述:
-
slave节点请求增量同步
-
master节点判断replid,发现不一致,拒绝增量同步
-
master将完整内存数据生成RDB,发送RDB到slave
-
slave清空本地数据,加载master的RDB
-
master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
-
slave执行接收到的命令,保持与master之间的同步
2.2.2.增量同步
全量同步需要先做RDB,然后将RDB文件通过网络传输给 slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步。
什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
那么master怎么知道slave与自己的数据差异在哪里呢?
2.2.3.repl_backlog原理
master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
直到数组被填满:
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
2.3.主从同步优化
主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:
-
在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
-
Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
-
适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
-
限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
主从从架构图:
3.Redis哨兵
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。
3.1.哨兵原理
3.1.1.集群结构和作用
哨兵的结构如图:
哨兵的作用如下:
-
监控:Sentinel 会不断检查您的master和slave是否按预期工作
-
自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
-
通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
3.1.2.集群监控原理
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
3.1.3.集群故障恢复原理
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
-
首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
-
然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
-
如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
-
最后是判断slave节点的运行id大小,越小优先级越高。
当选出一个新的master后,该如何实现切换呢?
流程如下:
-
sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
-
sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
-
最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
3.2.搭建哨兵集群
具体搭建流程参考课前资料《Redis集群.md》
3.3.RedisTemplate集成哨兵机制
在Sentinel集群监管下的Redis主从集群,其节点角色会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。
下面,我们来实现RedisTemplate集成哨兵机制。
1.引入依赖
在项目的pom文件中引入依赖:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
2.配置Redis地址
然后在配置文件application.yml中指定redis的sentinel相关信息:
spring:
redis:
sentinel:
master: mymaster
nodes:
- 192.168.150.101:27001
- 192.168.150.101:27002
- 192.168.150.101:27003
3.配置读写分离
在项目的启动类中,添加一个新的bean:
@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}
这个bean中配置的就是读写策略,包括四种:
-
MASTER:从主节点读取
-
MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
-
REPLICA:从slave(replica)节点读取
-
REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master