基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

写上篇文章时测试过程比较乱,写的时候有些地方有点失误,所以重新写了这篇
本文内容均在RGB-D环境下进行程序测试

本文涉及到的动态特征点剔除速度均是以https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_xyz数据进行实验

方法1:segment坐标点集合逐一排查剔除

利用YOLOv8的segment获取动态对象(这里指人person)所在区域的坐标点集合segpoints,之后将提取的特征点的坐标逐一与segpoints中的所有坐标作判断,将出现在segpoints中的特征点的坐标改为(-1,-1),然后在畸变校正时会将坐标为(-1,-1)的异常坐标剔除。但是segpoints中的数据量太大,完成一次剔除任务花费的时间太长(基本在40~50ms,这个与动态区域的大小即segpoints中的点数是有关的)。另外,特征点坐标为浮点型,而segpoints中的坐标为整型,其实没必要非用 = 判断,可以判断特征点在获取的动态目标区域坐标的周围1(可以调整,我最终在程序中使用半径为2)个像素就可以了,这已经很接近=了。

下面是部分代码:

std::vector<cv::Point> segpoints;
for (auto& obj:objs_seg) {
    int idx = obj.label;
    if (idx == 0)
    {
        cv::Mat locations;
        cv::findNonZero(obj.boxMask == 255, locations);
        for (int i = 0; i < locations.rows; ++i) {
            cv::Point segpoint = locations.at<cv::Point>(i);
            segpoint.x += obj.rect.x;
            segpoint.y += obj.rect.y;

            segpoints.push_back(segpoint);
        }
    }
}
// 动态特征点的判断
for (int k=0; k<mvKeys.size(); ++k){
    const cv::KeyPoint& kp = mvKeys[k];
    bool isDynamic = false;
    for (int kk = 0; kk < segpoints.size(); ++kk) {
        if (kp.pt.x > segpoints[kk].x-3 && kp.pt.x < segpoints[kk].x+3 && kp.pt.y > segpoints[kk].y-3 && kp.pt.y < segpoints[kk].y+3) 
        {
            mvKeys[k] = cv::KeyPoint(-1,-1,-1);
            isDynamic = true;
            break;
        }
    }
    vbInDynamic_mvKeys.push_back(isDynamic);
}

方法2:利用目标检测框

利用YOLOv8进行目标检测,将检测到的目标分为两类:动态对象和静态对象。
这里仅将person设为动态对象。获取动态对象及静态对象的检测框后判断提取的特征点是否在动态对象检测框内以及是否在静态对象检测框内。

1.特征点在动态对象检测框内而不在静态对象检测框内,则满足剔除条件,将其剔除;
2.其余情况皆不满足剔除条件。

采用这种方法速度提升至0.02~0.03ms.

struct DyObject {
    cv::Rect_<float> rect;
    int              id = 0;
};

std::vector<ORB_SLAM2::DyObject> detect_results;
for (auto& obj:objs_det)
{
    int class_id = 0;// id为0代表其为静态对象
    int class_label = obj.label;
    if (class_label == 0){// 如果是人person则将其id改为1即动态对象
        class_id = 1;
    }
    cv::Rect_<float> bbox;
    bbox = obj.rect;
    ORB_SLAM2::DyObject detect_result;
    detect_result.rect = bbox;
    detect_result.id = class_id;
    detect_results.push_back(detect_result);
}
// 判断特征点是否在动态检测框内
bool Frame::isDynamic(const int& i,std::vector<DyObject>& detect_results){
        const cv::KeyPoint& kp = mvKeys[i];
        float kp_u  = kp.pt.x;
        float kp_v = kp.pt.y;
        bool is_dynamic = false;
        for(auto& result:detect_results)
        {
            int idx = result.id;
            if (idx == 1){
                double left = result.rect.x;
                double top = result.rect.y;
                double right = result.rect.x + result.rect.width;
                double bottom = result.rect.y + result.rect.height;
                if(kp_u>left-2 && kp_u<right+2 && kp_v>top-2 && kp_v<bottom-2)
                {
                    // 如果特征点在动态目标检测框内
                    is_dynamic = true;
                }
            }
        }
        return is_dynamic;
}

// 判断特征点是否在静态检测框内
bool Frame::isStatic(const int& i,std::vector<DyObject>& detect_results){
        const cv::KeyPoint& kp = mvKeys[i];
        float kp_u  = kp.pt.x;
        float kp_v = kp.pt.y;
        bool is_static = false;
        for(auto& result:detect_results)
        {
            int idx = result.id;
            if (idx == 0){
                double left = result.rect.x;
                double top = result.rect.y;
                double right = result.rect.x + result.rect.width;
                double bottom = result.rect.y + result.rect.height;
                if(kp_u>left && kp_u<right && kp_v>top && kp_v<bottom)
                {
                    is_static = true;
                }
            }
        }
        return is_static;

}

优化(方法3):目标检测框+实例分割

针对方法1关于速度即处理数据量太大的问题,其实可以将方法1与方法2结合运用,先利用方法2进行判断特征点是否在动态目标的检测框内(不过不需要判断是否在静态目标的检测框内了,方法2中如果在静态目标检测框内就保留该点而不会被剔除,这里舍弃此步骤也是宁缺毋滥的原则),如果判断结果为真的话,则利用方法1将特征点与实例分割的Mask坐标进行判断即可,这样就可以节省很多时间了。

// 动态目标特征点的判断
//先定义一种目标检测的结果结构
struct DyObject {
    cv::Rect_<float> rect;
    std::vector<cv::Point> pts;
    int              id = 0;
};

for (auto& obj:objs_seg) {
    int idx = obj.label;
    std::vector<cv::Point> segpoints;
    cv::Mat locations;
    cv::findNonZero(obj.boxMask == 255, locations);
    for (int i = 0; i < locations.rows; ++i) {
        cv::Point segpoint = locations.at<cv::Point>(i);
        cv::Rect_<float> rect;
        segpoint.x += obj.rect.x;
        segpoint.y += obj.rect.y;
        segpoints.push_back(segpoint);
    }
    ORB_SLAM2::DyObject detect_result;
    detect_result.rect = obj.rect;
    detect_result.pts = segpoints;
    detect_result.id = idx;
    detect_results.push_back(detect_result);
}

速度控制在了25ms以内。

方案1可以被舍弃了,对于方法2与方法3,测试一下二者在精度上的差异,因为从上面的工作中可以看出方法2的速度很快,如果精度差异很小的话为了SLAM实时性还是采用方法2比较好。
TUM提供了SLAM轨迹精度评估工具:
evaluate_ate.py、evaluate_rpe.py、associate.py
具体内容:https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools
将上面三个代码下载后就可以对TUM数据集的结果轨迹进行精度评估了。

首先是方法2仅利用目标检测框的一个特征点剔除情况:紫色的点就是之后会被剔除的点。

然后是方法3的特征点剔除情况:

上面两张图片的对比可以看出方法2会将一些有用的特征点也标记为动态特征点,而方法3会更精确。关于图片中红色圆圈,是我做的纹理分析,目前还没完全做好所以就先不讲了。

我对ORB-SLAM2与我基于ORB-SLAM2andYOLOv8(方法2与方法3)在数据集rgbd_dataset_freiburg3_walking_xyz的结果轨迹进行了精度评估,结果如下:

精度评估
TUM-freiburg3_walking_xyzORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.5555830.0225210.018761
ATE0.4742760.0173880.014755

方法3利用目标检测框+实例分割的方法的精度是最优的。

下面再测测https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_rpy

精度评估
TUM-freiburg3_walking_rpyORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.9686050.0358530.035431
ATE0.7880890.0299420.028222

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_sitting_halfsphere

精度评估
TUM-freiburg3_walking_halfphereORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.3579840.0452500.029718
ATE0.2940750.0363010.023612

从以上从三个数据集获得的三组精度评估结果来看,方法3的精度最高,25ms的动态特征点处理速度也是可接受的(我的电脑算是比较旧了)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/403069.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

c++ 到底是什么呢。需要学的太多了!

如谷歌&#xff0c;苹果&#xff0c;微软&#xff0c;造硬件的更是如此&#xff0c;如amd的&#xff0c;英传达&#xff0c;英特尔&#xff0c;他们都有C加速库。 C难就难在你如果达到顶峰&#xff0c;像些公司一样&#xff0c;是非常难的。因为这些公司已经垄断了市场。 C编译…

Android 圆环带刻度条进度动画效果实现

效果图 需求是根据传感器做一个重力球效果&#xff0c;先实现了动画后续加上跟传感器联动. 又是摆烂的一天&#xff0c; 尚能呼吸&#xff0c;未来可期啊 View源码 package com.android.circlescalebar.view;import android.content.Context; import android.content.res.Typ…

LabVIEW高效核磁测井仪器多线程优化

LabVIEW高效核磁测井仪器多线程优化 为提高核磁测井仪器的测试效率与性能&#xff0c;开发了基于LabVIEW的多线程优化模型。该研究针对传统的核磁测井仪器软件&#xff0c;在多任务调度测试和并行技术需求上存在的效率不高和资源利用率低的问题&#xff0c;提出了一个多线程优…

智慧公厕管理系统:让城市智慧驿站更加智慧舒适

智慧公厕管理系统是城市智慧驿站中不可或缺的一部分&#xff0c;它通过全方位的信息化解决方案&#xff0c;为公共厕所的使用、运营和管理提供了一种智能化的方式。作为城市智慧驿站的重要组成部分&#xff0c;智慧公厕管理系统发挥着重要的作用&#xff0c;为城市社会民生提供…

数字化转型导师坚鹏:数字政府技术、业务、数据融合发展路径探索

数字政府建设与发展研究 ——技术、业务、数据融合发展路径探索 课程背景&#xff1a; 很多政府存在以下问题&#xff1a; 不清楚数字政府建设内涵 不清楚数字政府建设现状 不清楚数字政府融合路径 课程特色&#xff1a; 有实战案例 有原创观点 有精彩解读 学…

基于Android的大学生足球赛事管理系统的设计与实现

足球是世界范围内广受欢迎的一种体育运动&#xff0c;国内有中超、中甲及大学生联赛等各级别的赛事&#xff0c;中超和中甲基本上都有专业的球队在运营&#xff0c;而大学生联赛属于校园级别的赛事&#xff0c;其重视程度较为有限&#xff0c;使得其信息化水平不高&#xff0c;…

【2024软件测试面试必会技能】python(5):python读取excel数据

python读取excel数据 xlrd参考&#xff1a;https://www.cnblogs.com/dream66/p/12572007.html openpyxl参考&#xff1a;https://www.cnblogs.com/dream66/p/12599627.html xlrd/xlwt模块简介&#xff1a; python操作excel主要用到xlrd和xlwt这两个库&#xff0c;即xlrd是读…

《最新出炉》系列初窥篇-Python+Playwright自动化测试-20-处理鼠标拖拽-下篇

1.简介 上一篇中&#xff0c;宏哥说的宏哥在最后提到网站的反爬虫机制&#xff0c;那么宏哥在自己本地做一个网页&#xff0c;没有那个反爬虫的机制&#xff0c;谷歌浏览器是不是就可以验证成功了&#xff0c;宏哥就想验证一下自己想法&#xff0c;其次有人私信宏哥说是有那种…

嵌入式培训机构四个月实训课程笔记(完整版)-Linux ARM驱动编程第八天-高级驱动framebuffer(物联技术666)

链接&#xff1a;https://pan.baidu.com/s/1cd7LOSAvmPgVRPAyuMX7Fg?pwd1688 提取码&#xff1a;1688 帧缓冲&#xff08;framebuffer&#xff09;设备应用于linux显示技术方面。因为linux的显示平台已经全部基于framebuffer&#xff0c;所以目前在linux环境下开发图形化界面、…

了解JSON的作用及其方法

什么是json JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式采用完全独立编程语言的文本格式存储和表示数据&#xff08;就是字符串&#xff09;。它基于JavaScript语法&#xff0c;但可以被多种编程语言使用和解析。JSON以键值对的形式存…

Stable Diffusion 绘画入门教程(webui)-ControlNet(深度Depth)

上篇文章介绍了线稿约束&#xff0c;这篇文章介绍下深度Depth 文章目录 一、选大模型二、写提示词三、基础参数设置四、启用ControlNet 顾名思义&#xff0c;就是把原图预处理为深度图&#xff0c;而深度图可以区分出图像中各元素的远近关系&#xff0c;那么啥事深度图&#xf…

鸿蒙开源!OpenHarmony——手机的CPU信息应用

1.应用安装步骤 应用下载地址与源码开源如下&#xff1a; CPU_device_information 2.实现功能 完成了开发者手机以下信息的获取 - CPU核心数 - SOC型号 - GPU温度 - 主板温度 - 系统运行时间 - RAM总内存 - RAM可用内存 - RAM空闲内存 - 缓存使用内存 - Swaps交换分区 - 系…

JavaScript在web自动化测试中的应用

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

契约锁与400多家软件厂商实现集成应用

契约锁电子签及印控产品具备200多种功能接口&#xff0c;拥有400多家管理软件厂商集成对接经验&#xff0c;覆盖ERP、OA、业务系统、移动APP应用、低代码平台、BPM、小程序等42种软件类型&#xff0c;在帮助组织落实印章管理制度的同时&#xff0c;按需构建业务电子签场景&…

【计算机网络】一些乱七八糟内容

MAC Media Access Control 用于在局域网&#xff08;LAN&#xff09;或广域网&#xff08;WAN&#xff09;中实现设备自动接入网络 "载波侦听多路访问"(Carrier Sense Multiple Access) CSMA/CD 是CSMA的升级版本&#xff0c;加入了序列号检测机制。 CSMA/CA 是CSM…

旅游分享系列之:福建旅游攻略

旅游分享系列之&#xff1a;福建旅游攻略 一、漳州1.福建土楼2.云水谣3.四菜一汤景点 二、厦门1.园林博览苑2.海上自行车道3.山海步道4.海滩5.闽南菜6.落日 三、泉州1.衙口沙滩2.海上日出3.珞珈寺4.海滩烟花 一、漳州 游玩2个景点&#xff1a;云水谣&#xff0c;四菜一汤可以住…

图形系统开发实战课程:进阶篇(上)——6.图形交互操作:拾取

图形开发学院&#xff5c;GraphAnyWhere 课程名称&#xff1a;图形系统开发实战课程&#xff1a;进阶篇(上)课程章节&#xff1a;“图形交互操作:拾取”原文地址&#xff1a;https://www.graphanywhere.com/graph/advanced/2-6.html 第六章 图形交互操作:拾取 \quad 在图形系统…

Avalonia 初学笔记(2):简单了解与WPF的区别

文章目录 相关链接前言Avalonia相对于WPF的新特性简单介绍ChatGPT推荐Avalonia Demo案例Avalonia 开始使用Avalonia 文件扩展名Avalonia Toolkit 扩展安装修改.net core版本Avalonia对WPF的修改类CSS选择器Style的定义简单代码 数据绑定直接绑定UserControl.DataContext和Desig…

128.乐理基础-五线谱-纯四度、纯五度

内容参考于&#xff1a;三分钟音乐社 上一个内容&#xff1a;127.乐理基础-五线谱-纯一度、纯八度-CSDN博客 上一个内容里练习的答案&#xff1a; 纯四度、纯五度的结论 纯四度例子&#xff1a; 例子1&#xff1a; 例子2&#xff1a; 纯四度两个条件&#xff0c;音数是2.5&a…

HTML好玩代码合集(2)

这一期HTML好玩代码合集是动态烟花文字&#xff0c;是本期里最好玩的一个HTML代码&#xff08;把文字可以改成表白的&#xff09;&#xff0c;先看效果&#xff1a; 这个效果是动态的&#xff0c;那些数字都是有烟花堆积成的&#xff0c;代码在哪里呢&#xff1f; 在这里&…