文章目录
- 构造的目的
- 定理
- 另一篇中对于该定理的表述
- 出处
构造的目的
通过增加辅助变量,使原来的非凸问题变为关于各个变量的凸子问题,交替优化各个辅助变量。
定理
Define an
m
m
m by
m
m
m matrix function
E
(
U
,
V
)
≜
(
I
−
U
H
H
V
)
(
I
−
U
H
H
V
)
H
+
U
H
N
U
\mathbf{E}(\mathbf{U}, \mathbf{V}) \triangleq\left(\mathbf{I}-\mathbf{U}^{H} \mathbf{H} \mathbf{V}\right)\left(\mathbf{I}-\mathbf{U}^{H} \mathbf{H} \mathbf{V}\right)^{H}+\mathbf{U}^{H} \mathbf{N} \mathbf{U}
E(U,V)≜(I−UHHV)(I−UHHV)H+UHNU
where
N
\mathbf{N}
N is any positive definite matrix. The following three facts hold true.
-
For any positive definite matrix E ∈ C m × m , we have \text { For any positive definite matrix } \mathbf{E} \in \mathbb{C}^{m \times m} \text {, we have } For any positive definite matrix E∈Cm×m, we have
E − 1 = arg max W ≻ 0 log det ( W ) − Tr ( W E ) \mathbf{E}^{-1}=\arg \max _{\mathbf{W} \succ \mathbf{0}} \log \operatorname{det}(\mathbf{W})-\operatorname{Tr}(\mathbf{W E}) E−1=argW≻0maxlogdet(W)−Tr(WE)
(注:argmax表示找到使某个函数取得最大值的参数值)
and
− log det ( E ) = max W ≻ 0 log det ( W ) − Tr ( W E ) + m -\log \operatorname{det}(\mathbf{E})=\max _{\mathbf{W} \succ \mathbf{0}} \log \operatorname{det}(\mathbf{W})-\operatorname{Tr}(\mathbf{W E})+m −logdet(E)=W≻0maxlogdet(W)−Tr(WE)+m -
For any positive definite matrix W , we have \text { For any positive definite matrix } \mathbf{W} \text {, we have } For any positive definite matrix W, we have
U ~ ≜ arg min U Tr ( W E ( U , V ) ) = ( N + H V V H H H H ) − 1 H V \begin{aligned} \tilde{\mathbf{U}} & \triangleq \arg \min _{\mathbf{U}} \operatorname{Tr}(\mathbf{W E}(\mathbf{U}, \mathbf{V})) \\ & =\left(\mathbf{N}+\mathbf{H V V} \mathbf{H}^{H} \mathbf{H}^{H}\right)^{-1} \mathbf{H V} \end{aligned} U~≜argUminTr(WE(U,V))=(N+HVVHHHH)−1HV
and
E ( U ~ , V ) = I − U ~ H H V = ( I + V H H H N − 1 H V ) − 1 . \begin{aligned} \mathbf{E}(\tilde{\mathbf{U}}, \mathbf{V}) & =\mathbf{I}-\tilde{\mathbf{U}}^{H} \mathbf{H} \mathbf{V} \\ & =\left(\mathbf{I}+\mathbf{V}^{H} \mathbf{H}^{H} \mathbf{N}^{-1} \mathbf{H V}\right)^{-1} . \end{aligned} E(U~,V)=I−U~HHV=(I+VHHHN−1HV)−1.
3) We have
log
det
(
I
+
H
V
V
H
H
H
N
−
1
)
=
max
W
≻
0
,
U
log
det
(
W
)
−
Tr
(
W
E
(
U
,
V
)
)
+
m
\begin{aligned} \log \operatorname{det}(\mathbf{I}+ & \left.\mathbf{H V} \mathbf{V}^{H} \mathbf{H}^{H} \mathbf{N}^{-1}\right) \\ & =\max _{\mathbf{W} \succ \mathbf{0}, \mathbf{U}} \log \operatorname{det}(\mathbf{W})-\operatorname{Tr}(\mathbf{W E}(\mathbf{U}, \mathbf{V}))+m \end{aligned}
logdet(I+HVVHHHN−1)=W≻0,Umaxlogdet(W)−Tr(WE(U,V))+m
Facts 1) and 2) can be proven by simply using the first-order optimality condition, while Fact 3) directly follows from Facts 1) and 2) and the identity log det ( I + A B ) = log det ( I + B A ) \log \operatorname{det}(\mathbf{I}+\mathbf{A B})=\log \operatorname{det}(\mathbf{I}+\mathbf{B A}) logdet(I+AB)=logdet(I+BA) . We refer readers to [32], [33] for more detailed proof.
Next, using Lemma 4.1, we derive an equivalent problem of problem (5) by introducing some auxiliary variables. Define
E
(
U
,
V
)
≜
(
I
−
U
H
H
I
V
)
(
I
−
U
H
H
I
V
)
H
+
U
H
U
.
\mathbb{E}(\mathbf{U}, \mathbf{V}) \triangleq\left(\mathbf{I}-\mathbf{U}^{H} \mathbf{H}_{I} \mathbf{V}\right)\left(\mathbf{I}-\mathbf{U}^{H} \mathbf{H}_{I} \mathbf{V}\right)^{H}+\mathbf{U}^{H} \mathbf{U} .
E(U,V)≜(I−UHHIV)(I−UHHIV)H+UHU.
Then we have from Fact 3) that
log det ( I + H I V V H H I H ) = max W I ≻ 0 , U log det ( W I ) − Tr ( W I E ( U , V ) ) + d \begin{aligned} \log \operatorname{det}(\mathbf{I} & \left.+\mathbf{H}_{I} \mathbf{V} \mathbf{V}^{H} \mathbf{H}_{I}^{H}\right) \\ & =\max _{\mathbf{W}_{I} \succ 0, \mathbf{U}} \log \operatorname{det}\left(\mathbf{W}_{I}\right)-\operatorname{Tr}\left(\mathbf{W}_{I} \mathbb{E}(\mathbf{U}, \mathbf{V})\right)+d \end{aligned} logdet(I+HIVVHHIH)=WI≻0,Umaxlogdet(WI)−Tr(WIE(U,V))+d
Furthermore, from Fact 1), we have
− log det ( I + H E V V H H E H ) = max W E ≻ 0 log det ( W E ) − Tr ( W E ( I + H E V V H H E H ) ) + N E . \begin{array}{l} -\log \operatorname{det}\left(\mathbf{I}+\mathbf{H}_{E} \mathbf{V} \mathbf{V}^{H} \mathbf{H}_{E}^{H}\right) \\ =\max _{\mathbf{W}_{E} \succ 0} \log \operatorname{det}\left(\mathbf{W}_{E}\right)-\operatorname{Tr}\left(\mathbf{W}_{E}\left(\mathbf{I}+\mathbf{H}_{E} \mathbf{V} \mathbf{V}^{H} \mathbf{H}_{E}^{H}\right)\right)+N_{E} . \end{array} −logdet(I+HEVVHHEH)=maxWE≻0logdet(WE)−Tr(WE(I+HEVVHHEH))+NE.
另一篇中对于该定理的表述
Physical Layer Security in Near-Field Communications
出处
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7018097 lemma 4.1