MLflow【部署 01】MLflow官网Quick Start实操(一篇学会部署使用MLflow)

一篇学会部署使用MLflow

  • 1.版本及环境
  • 2.官方步骤
    • Step-1 Get MLflow
    • Step-2 Start a Tracking Server
    • Step 3 - Train a model and prepare metadata for logging
    • Step 4 - Log the model and its metadata to MLflow
    • Step 5 - Load the model as a Python Function (pyfunc) and use it for inference
    • Step 6 - View the Run in the MLflow UI
  • 3.总结

Learn in 5 minutes how to log,register,and load a model for inference. 在5分钟内学习如何记录、注册和加载模型用于推理。

1.版本及环境

本文基于2.9.2版本进行说明,内容来自官方文档:https://www.mlflow.org/docs/2.9.2/getting-started/intro-quickstart/index.html,测试环境说明:

# 1.服务器系统版本
CentOS Linux release 7.9.2009 (Core)

# 2.使用conda创建的虚拟环境【conda create -n mlflow python=3.8】
(mlflow) [root@tcloud /]# python -V
Python 3.8.18

2.官方步骤

Step-1 Get MLflow

# 官方步骤
pip install mlflow

# 实际操作【限制版本 否则会安装最新版本】
pip install mlflow==2.9.2

Step-2 Start a Tracking Server

# 官方步骤
mlflow server --host 127.0.0.1 --port 8080
# 启动日志【删除了时间信息】
[5027] [INFO] Starting gunicorn 21.2.0
[5027] [INFO] Listening at: http://127.0.0.1:8080 (5027)
[5027] [INFO] Using worker: sync
[5030] [INFO] Booting worker with pid: 5030
[5031] [INFO] Booting worker with pid: 5031
[5032] [INFO] Booting worker with pid: 5032
[5033] [INFO] Booting worker with pid: 5033

# 实际操作【使用的是腾讯云服务器】
mlflow server --host 0.0.0.0 --port 9090
# 启动日志【删除了时间信息】
[13020] [INFO] Starting gunicorn 21.2.0
[13020] [INFO] Listening at: http://0.0.0.0:9090 (13020)
[13020] [INFO] Using worker: sync
[13023] [INFO] Booting worker with pid: 13023
[13024] [INFO] Booting worker with pid: 13024
[13025] [INFO] Booting worker with pid: 13025
[13026] [INFO] Booting worker with pid: 13026
  • –host 0.0.0.0 to listen on all network interfaces (or a specific interface address).

启动后,访问http://<host>:<port>可查看到页面:

image.png

如果使用的是 Databricks 未提供的托管 MLflow 跟踪服务器,或者运行本地跟踪服务器,请确保使用以下命令设置跟踪服务器的 URI:

import mlflow

mlflow.set_tracking_uri(uri="http://<host>:<port>")

如果未在运行时环境中设置此项,则运行将记录到本地文件系统。

Step 3 - Train a model and prepare metadata for logging

在本部分中,我们将使用 MLflow 记录模型。这些步骤的快速概述如下:

  • 加载并准备用于建模的 Iris 数据集。
  • 训练逻辑回归模型并评估其性能。
  • 准备模型超参数并计算日志记录指标。

官方代码如下:

import mlflow
from mlflow.models import infer_signature

import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score


# Load the Iris dataset
X, y = datasets.load_iris(return_X_y=True)

# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

# Define the model hyperparameters
params = {
    "solver": "lbfgs",
    "max_iter": 1000,
    "multi_class": "auto",
    "random_state": 8888,
}

# Train the model
lr = LogisticRegression(**params)
lr.fit(X_train, y_train)

# Predict on the test set
y_pred = lr.predict(X_test)

# Calculate metrics
accuracy = accuracy_score(y_test, y_pred)

Step 4 - Log the model and its metadata to MLflow

这个步骤将使用我们训练的模型、为模型拟合指定的超参数,以及通过评估模型对要记录到 MLflow 的测试数据的性能来计算的损失指标。步骤如下:

  • 启动 MLflow 运行上下文以启动新运行,我们将模型和元数据记录到该运行。
  • 记录模型参数和性能指标。
  • 标记运行以便于检索。
  • 在记录(保存)模型时,在 MLflow 模型注册表中注册模型。

官方代码如下:

# Set our tracking server uri for logging
mlflow.set_tracking_uri(uri="http://127.0.0.1:8080")

# Create a new MLflow Experiment
mlflow.set_experiment("MLflow Quickstart")

# Start an MLflow run
with mlflow.start_run():
    # Log the hyperparameters
    mlflow.log_params(params)

    # Log the loss metric
    mlflow.log_metric("accuracy", accuracy)

    # Set a tag that we can use to remind ourselves what this run was for
    mlflow.set_tag("Training Info", "Basic LR model for iris data")

    # Infer the model signature
    signature = infer_signature(X_train, lr.predict(X_train))

    # Log the model
    model_info = mlflow.sklearn.log_model(
        sk_model=lr,
        artifact_path="iris_model",
        signature=signature,
        input_example=X_train,
        registered_model_name="tracking-quickstart",
    )

Step 5 - Load the model as a Python Function (pyfunc) and use it for inference

记录模型后,我们可以通过以下方式执行推理:

  • 使用 MLflow 的 pyfunc 风格加载模型。
  • 使用加载的模型对新数据运行 Predict。

官方源码如下:

# Load the model back for predictions as a generic Python Function model
loaded_model = mlflow.pyfunc.load_model(model_info.model_uri)

predictions = loaded_model.predict(X_test)

iris_feature_names = datasets.load_iris().feature_names

result = pd.DataFrame(X_test, columns=iris_feature_names)
result["actual_class"] = y_test
result["predicted_class"] = predictions

result[:4]

Step 6 - View the Run in the MLflow UI

官方带注释的示例:


实际执行示例:

image.png
官方运行详情图片:


实际运行详情图片:

image.png
查看生成的模型:

image.png
恭喜你完成了 MLflow 跟踪快速入门!

3.总结

  • 安装简单
  • 快速入门不难
  • 能够灵活应用需要进行更多的学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/402666.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Hackme 1

信息收集 Nmap部分 存活扫描&#xff1a; └─# nmap -sn 192.168.10.1/24 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-02-20 15:00 CST Nmap scan report for 192.168.10.1 (192.168.10.1) Host is up (0.00012s latency). MAC Address: 00:50:56:C0:00:08 (VMwar…

matlab代码--基于matlabLDPC-和积译码系统

LDPC编码 一个码长为n、信息位个数为k的线性分组码&#xff08;n,k&#xff09;可以由一个生成矩阵 来定义&#xff0c;信息序列 通过G被映射到码字XS.G。线性分组码也可以由一个校验矩阵 来描述。所以码字均满足 。校验矩阵的每一行表示一个校验约束 &#xff0c;其中所有的非…

C++入门学习(三十二)二维数组定义方式

一维数组类似于一条“线”&#xff0c;而二维数组类似于一个“面”&#xff0c;二维数组也更像一个表格&#xff0c;由我们在“表格”中查询数据。 1、先定义数组&#xff0c;后赋值 int arr[2][3]; #include <iostream> using namespace std;int main() { int arr…

分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测

分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测 目录 分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab…

day6 2/22

1> 将互斥机制的代码实现重新敲一遍 #include<myhead.h> int num520; pthread_mutex_t mutex;//创建互斥锁 void*task1(void*arg) {pthread_mutex_lock(&mutex);sleep(3);num;printf("%d\n",num);pthread_mutex_unlock(&mutex);pthread_exit(NULL)…

2024/2/22

P8680 [蓝桥杯 2019 省 B] 特别数的和 题目描述 小明对数位中含有 2、0、1、9 的数字很感兴趣&#xff08;不包括前导 00&#xff09;&#xff0c;在 1 到 40 中这样的数包括 1、2、9、10 至 32、39 和 40&#xff0c;共28 个&#xff0c;他们的和是574。 请问&#xff0c;在…

【Git】:标签功能

标签功能 一.标签操作二.推送远程标签 标签 tag &#xff0c;可以简单的理解为是对某次commit的⼀个标识&#xff0c;相当于起了⼀个别名。例如&#xff0c;在项⽬发布某个版本的时候&#xff0c;针对最后⼀次commit起⼀个v1.0这样的标签来标识⾥程碑的意义。这有什么⽤呢&…

CRF算法(Conditional Random Fields)揭秘

CRF基本介绍 在机器学习中&#xff0c;建模线性序列结构的方法&#xff0c;除了HMM算法&#xff0c;另一个重要的模型就是CRF。HMM为了降低模型复杂性&#xff0c;对观测变量做了独立假设(即隐状态之间有相关性&#xff0c;而观测变量之间没有相关性)&#xff0c;这在某种程度…

五种多目标优化算法(MSSA、MOJS、NSWOA、MOPSO、MOAHA)性能对比,包含6种评价指标,9个测试函数(提供MATLAB代码)

一、5种多目标优化算法简介 1.1MSSA 1.2MOJS 1.3NSWOA 1.4MOPSO 1.5MOAHA 二、5种多目标优化算法性能对比 为了测试5种算法的性能将其求解9个多目标测试函数&#xff08;zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3&#xff09;&#xff0c…

C2-1.4(L1,L2)正则化

C2-1.4&#xff08;L1,L2&#xff09;正则化 参考书籍 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息&#xff0c;以便防止过拟合和提高模型泛化性能的一类方法的统称。也就是目标函数变成了原始损失函数额外项&#xff0c;常用的额外项一般…

Python实现简易小钢琴

Python实现简易小钢琴 使用Python和内带的Tkinter库、winsound 模块实现的简单小钢琴。 Tkinter库和winsound模块不需要额外安装就可以使用&#xff0c;因为它们是Python的标准库之一&#xff0c;已经随着Python的安装包一起提供。标准库是Python官方提供的一组核心模块和工具…

MFC 多文档程序的基本编程

下载了一个openGL mfc的多文档程序,以此来学习mfc多文档模式的编程; 它每次新建一个文档,会在窗口绘制一个三角形、一个矩形;如果没有了图形刷新一下; 先看一下为什么每次打开新文档会绘制图形; 生成工程之后主要有5个类,比单文档程序多了一个子框架类; 可以打开多个…

C++:STL简介

1. 什么是STL STL(standard template libaray- 标准模板库 ) &#xff1a; 是 C 标准库的重要组成部分 &#xff0c;不仅是一个可复用的组件库&#xff0c;而且 是一个包罗数据结构与算法的软件框架 。 2. STL的版本 3. STL的六大组件 4.STL的缺陷 1. STL库的更新太慢了。这…

计算机设计大赛 深度学习乳腺癌分类

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度&#xff0c;召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…

【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度

目录 1 -> 算法效率 1.1 -> 如何衡量一个算法的好坏&#xff1f; 1.2 -> 算法的复杂度 2 -> 时间复杂度 2.1 -> 时间复杂度的概念 2.2 -> 大O的渐进表示法 2.3 -> 常见时间复杂度计算 3 -> 空间复杂度 4 -> 常见复杂度对比 1 -> 算法效…

第2部分 基础篇 第2章 隐私计算技术简介(1)

2.6.1. 隐私计算技术解决什么问题&#xff1f; 本聪老师&#xff1a;关于隐私计算&#xff0c;我想先问大家一个问题&#xff1a;隐私计算技术能够解决什么问题&#xff1f; 小明&#xff1a;是不是应该是保护用户的隐私。 本聪老师&#xff1a;可以这么说&#xff0c;但是怎…

一 些有代表性的相位解包裹算法

Itoh首先给出了传统解包裹算法的数学描述!。传统的相位解包裹操作是通过对空间相邻点相位值的比较来完成的。根据抽样定理&#xff0c;如果相邻采样点的相位差不超过z&#xff0c;则对应的相位解包裹处理是非常简单的&#xff0c;理论上以某点为起始点沿某一路径对包裹相位的差…

如何使用Docker部署MongoDB并结合内网穿透实现远程访问本地数据库

文章目录 前言1. 安装Docker2. 使用Docker拉取MongoDB镜像3. 创建并启动MongoDB容器4. 本地连接测试5. 公网远程访问本地MongoDB容器5.1 内网穿透工具安装5.2 创建远程连接公网地址5.3 使用固定TCP地址远程访问 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 …

机器学习第二十八周周报 PINNs2

文章目录 week28 PINNs2摘要Abstract一、Lipschitz条件二、文献阅读1. 题目数据驱动的偏微分方程2. 连续时间模型3. 离散时间模型4.结论 三、CLSTM1. 任务要求2. 实验结果3. 实验代码3.1模型构建3.2训练过程代码 小结参考文献 week28 PINNs2 摘要 本文主要讨论PINN。本文简要…

如何利用内网穿透工具在企业微信开发者中心实现本地接口服务回调

文章目录 1. Windows安装Cpolar2. 创建Cpolar域名3. 创建企业微信应用4. 定义回调本地接口5. 回调和可信域名接口校验6. 设置固定Cpolar域名7. 使用固定域名校验 企业微信开发者在应用的开发测试阶段&#xff0c;应用服务通常是部署在开发环境&#xff0c;在有数据回调的开发场…