ChatGPT丨“成像光谱遥感技术中的AI革命:ChatGPT应用指南“

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。本文重点介绍ChatGPT在遥感中的应用,人工智能在解释复杂数据、提供见解和帮助决策过程方面的多功能性和强大性,这些都对遥感应用领域,比如环境监测、灾害管理、城市规划等至关重要。ChatGPT先进人工智能模型的开发,开辟了该领域的新领域。本文全面介绍ChatGPT先进人工智能的基本概念及其在遥感中的应用。

本文的主要亮点是实用性。从数据分析到预测建模,该课程为遥感项目中集成人工智能工具提供了一种清晰而系统的方法。随着课程的展开,将向学习者介绍各种案例研究和项目,展示人工智能在遥感中的实际应用。这些例子不仅可以说明所讨论的概念,而且可以启发学生在自己的项目和研究中的创新思维和应用

本文的另一个突出特点是它深入讲解了ChatGPT在遥感领域科学研究中的应用。课程讨论了ChatGPT如何彻底改变你总结研究结果、起草和完善文章的方式,帮助完成复杂的数据结果的可视化。它展示了人工智能在提高遥感领域论文编写和数据可视化的效率和质量方面的实际效果。无论你是在编写研究摘要、起草论文发表,还是寻求更有效地展示你的数据,ChatGPT都是一个强大的工具,可以简化这些流程,提高你的工作标准。

最后,“遥感科学中的人工智能革命:ChatGPT应用指南”课程为我们打开了一扇窗户,让我们了解应用人工智能技术来改变遥感科学研究和应用的可能性。它突出了人工智能和遥感科学的融合,展示了我们在理解地球和与地球互动方面取得重大进展的潜力。这门课程是一次探索、技能提升和实际应用的旅程,为学习者站在这场技术革命的前沿奠定基础。

点击查看全文

第一章、遥感科学与AI基础

第一节:遥感科学的基本原理和历史

从摄影侦察到卫星图像

遥感的基本原理

遥感的典型应用

最新进展和未来趋势

图片

第二节:ChatGPT 简介

什么是ChatGPT?

发展简史和工作原理

ChatGPT可以做什么?

ChatGPT演示使用

ChatGPT的未来

图片

第三节:prompt 提示词

什么是prompt,有什么用?

Prompt技巧(大几岁)

最好的原则和策略

优质的学术提问prompt

图片

第四节:ChatGPT遥感提示词示例

提示词1:了解遥感科学的基础知识和前沿领域

提示词2:编写一段可以运行的深度学习代码

提示词3:编写可以读取遥感数据的python代码

提示词4:集成chatpgt和GEE的全球卫星影像显示

图片

第五节ChatGPT遥感应用介绍

目标层面(文献综述协助、创意生成、研发方案和任务规划起草)

执行层面(数据处理分析、工作流程优化、报告文章编写、可视化)

认知层面(数据挖掘、新算法、传感器改进建议、人工智能与遥感集成新方法)

图片

第六节ChatGPT、GEE等注册、python、envi等软件安装

ChatGPT 注册方法,升级方法,版本比较 GEE 注册python、envi等软件安装ChatGPT、GEE学习资源分享

图片

第二章、遥感影像数据处理分析软件与chatgpt集成

第一节遥感影像处理(ENVI+chatgpt)

遥感数据类型和处理流程

预处理技术

图像特征提取

图像分类

多光谱、高光谱分析

Chatgpt辅助下envi遥感数据处理

第二节Python遥感影像处理基础

Python简介

变量和数据类型

控制结构

功能和模块

文件、包、环境

栅格数据处理

图片

第三节Python与chatgpt集成

遥感影像读取和元数据分析

基本影像处理操作,如裁剪、重采样

变量和数据类型

遥感影像的可视化

图片

第四节GEE 基础

GEE的介绍和操做界面

Javascripe 基础

GEE两种模式客户端与服务端的区别

GEE遥感影像数据集及操做

GEE遥感数据导入导出

GEE 图像分类

图片

第五节chatgpt与GEE集成

Chatgpt与GEE集成使用示例(NDVI)

Chatgpt与GEE下载数据

Chatgpt与GEE遥感数据预处理

Chatgpt与GEE 图像分类

图片

第六节高级分析技术(机器学习、深度学习)

机器学习与sciki learn 介绍

数据和算法选择

通用学习流程

遥感机器学习模型

图片

第三章、多光谱数据分析与实践专题

第一节多光谱遥感基本概念与数据

多光谱遥感基本概念;

多光谱遥感的主要卫星数据源介绍及下载方法(哨兵、Landsat、Aster、Modis等)

ChatGPT应用:解释波段选择的重要性和多光谱数据的解读。

图片

第二节基于chatgpt和python的多光谱数据分析基础

基于chatgpt和python的多光谱数据预处理方法

基于chatgpt和python的多光谱数据分类方法

基于chatgpt和python多光谱数据重组整理、机器学习模型构建、训练方法

图片

第三节chatgpt+GEE 多光谱应用案例

干旱指数计算案例

洪水监测案例

城市绿地提取和分析案例

图片

四章、高光谱分析与实践专题

第一节:高光谱遥感基本概念

高光谱遥感、光的波长、光谱分辨率

高光谱遥感的历史和发展

高光谱数据预处理

地物识别与光谱特征

混合像元分解

图片

第二节:chatgpt+python 高光谱数据处理

数据读取与显示

光谱特征提取

混合像元分解

高光谱图像分类

高光谱参量反演

图片

第三节chatgpt+python 高光谱应用案例

矿物填图案例

农作物分类案例

土壤含水量评估案例

图片

点击查看全文

推荐阅读:


AI大模型引领未来智慧科研暨ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的高级应用

【无限学】ChatGPT/GPT4科研实践应用与AI绘图技术及论文高效写作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/401392.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ClickHouse--11--ClickHouse API操作

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1.Java 读写 ClickHouse API1.1 首先需要加入 maven 依赖1.2 Java 读取 ClickHouse 集群表数据JDBC--01--简介 ClickHouse java代码 1.3 Java 向 ClickHouse 表中写…

高校学科竞赛平台|基于springboot高校学科竞赛平台设计与实现(源码+数据库+文档)

高校学科竞赛平台目录 目录 基于springboot高校学科竞赛平台设计与实现 一、前言 二、系统功能设计 三、系统实现 1、竞赛题库管理 2、竞赛信息管理 3、晋级名单管理 4、往年成绩管理 5、参赛申请管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最…

typescript 索引签名类型

ts索引类型简介 在TypeScript中,索引签名类型(Index Signature Type)是一种特殊的类型,它定义了对象中键的类型以及相应的值的类型。通过使用索引签名类型,我们可以表示一个对象,该对象的键可以是任意类型…

Android全新UI框架之常用ComposeUI组件

在Compose中,每个组件都是一个带有Composable注解的函数,被称为Composable。Compose已经预置了很多基于MD设计规范的Composable组件。 在布局方面,Compose提供了Column、Row、Box三种布局组件(感觉跟flutter差不多),类似于传统视图…

《Python 语音转换简易速速上手小册》第5章 音频数据处理(2024 最新版)

文章目录 5.1 音频数据的基本处理5.1.1 基础知识5.1.2 主要案例:音频剪辑工具案例介绍案例 Demo案例分析 5.1.3 扩展案例 1:自动音量调节器案例介绍案例 Demo案例分析 5.1.4 扩展案例 2:语音识别预处理案例介绍案例 Demo案例分析 5.2 使用 Py…

LLM 模型融合实践指南:低成本构建高性能语言模型

编者按:随着大语言模型技术的快速发展,模型融合成为一种低成本但高性能的模型构建新途径。本文作者 Maxime Labonne 利用 mergekit 库探索了四种模型融合方法:SLERP、TIES、DARE和passthrough。通过配置示例和案例分析,作者详细阐…

开启智能互动新纪元——ChatGPT提示词工程的引领力

目录 提示词工程的引领力 高效利用ChatGPT提示词方法 提示词工程的引领力 近年来,随着人工智能技术的迅猛发展,ChatGPT提示词工程正逐渐崭露头角,为智能互动注入了新的活力。这一技术的引入,使得人机交流更加流畅、贴近用户需求&…

S-35390A计时芯片介绍及开发方案

计时芯片 S-35390A芯片是计时芯片,一般用来计算时间。低功耗,宽电压,受温度影响小,适用于很多电路。它有一个问题,不阻止用户设置不存在的时间,设置进去之后计时或者闹钟定时会出错。 规格书阅读 首先我…

推荐几款项目经理常用的项目管理软件

随着科技的发展和项目需求,项目管理工具成为了确保工作顺利进行的关键。市场上有许多优秀的免费项目管理工具,它们功能强大、易于使用,并可以帮助团队更有效地规划、组织、执行和监控项目。以下是几款深受项目经理欢迎,好用且免费…

【转载】企业资产收集与脆弱性检查工具

简介 云图极速版是针对拥有攻击面管理需求的用户打造的 SaaS 应用,致力于协助用户管理互联网资产攻击面的 SaaS 化订阅服务产品。可实现对备案域名、子域名、IP、端口、服务、网站、漏洞、安全风险等场景进行周期性监控,支持多维度分析攻击面。利用可视化…

uni-app 开发调试自动打开手机屏幕大小界面(Aidex移动端开发项目)

上效果: 下载Aidex的移动端项目并打开: 若依-ruoyi-AiDex-Uniapp: 若依-Ruoyi APP 移动解决方案,基于uniappuView封装的一套基础模版,开箱即用,免费开源,一份代码多终端适配,支持H5、支付宝小程…

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022

基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究_王秀英_2022 摘要关键词 1 材料和方法1.1 研究区概况与数据来源1.2 研究方法 2 结果和分析2.1 蒸散发通量观测数据缺省状况2.2 蒸散发与气象因子的相关性分析2.3 不同气象因子输入组合下各模型算法精度对比2.4 随机森林回归模…

【统计分析数学模型】聚类分析

【统计分析数学模型】聚类分析 一、聚类分析1. 基本原理2. 距离的度量(1)变量的测量尺度(2)距离(3)R语言计算距离 三、聚类方法1. 系统聚类法2. K均值法 三、示例1. Q型聚类(1)问题描…

springboot集成JWT实现token权限认证

vuespringboot登录与注册功能的实现 注&#xff1a;对于JWT的学习&#xff0c;首先要完成注册和登录的功能&#xff0c;本篇博客是基于上述博客的进阶学习&#xff0c;代码页也是在原有的基础上进行扩展 ①在pom.xml添加依赖 <!-- JWT --> <dependency><grou…

QPaint绘制自定义仪表盘组件01

网上抄别人的&#xff0c;只是放这里自己看一下&#xff0c;看完就删掉 ui Dashboard.pro QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# You can make your code fail to compile if it uses deprecated APIs. # In order to do so, uncomm…

5 原型模式 Prototype

1.模式定义: 指原型实例指定创建对象的种类&#xff0c;并且通过拷贝这些原型创建新的对象 2.应用场景&#xff1a; 当代码不应该依赖于需要复制的对象的具体类时&#xff0c;请使用Prototype模式。 Spring源码中的应用 org.springframework.beans.factory.support.AbstractB…

基于java springboot+mybatis OA办公自动化系统设计和实现

基于java springbootmybatis OA办公自动化系统设计和实现 博主介绍&#xff1a;5年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《500套》 欢迎点赞 收藏 ⭐留言 文末…

盘点那些世界名校计算机专业采用的教材

清华、北大、MIT、CMU、斯坦福的学霸们在新学期里要学什么&#xff1f;今天我们来盘点一下那些世界名校计算机专业采用的教材。 书单目录 1.《深入理解计算机系统》&#xff08;原书第3版&#xff09;2. 《算法导论》&#xff08;原书第3版&#xff09;3. 《计算机程序的构造和…

打架监测识别摄像机

打架监测识别摄像机是一种用于监控和识别打架行为的智能监控设备。这种摄像机利用先进的人工智能和计算机视觉技术&#xff0c;能够准确识别出监控画面中发生的打架事件&#xff0c;从而及时采取必要的应对措施。 打架监测识别摄像机的工作原理是通过对监控画面的实时分析和识别…

C语言每日一题(60)对链表进行插入排序

题目链接 力扣网 147 对链表进行插入排序 题目描述 给定单个链表的头 head &#xff0c;使用 插入排序 对链表进行排序&#xff0c;并返回 排序后链表的头 。 插入排序 算法的步骤: 插入排序是迭代的&#xff0c;每次只移动一个元素&#xff0c;直到所有元素可以形成一个有…