GIS技术在灾后重建中的空间规划与决策支持

地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉降等各种地质灾害,具有类型多样、分布广泛、危害性大的特点。地质灾害危险性评价着重于根据多种影响因素和区域选择来评估在某个区域中某个阶段发生的地质灾害程度。以此预测和分析未来某个地形单位发生地质灾害的可能性。根据地质灾害的孕育和发展机理,现有的数据资料和技术,以及实际应用需要,评价目标和研究经费等因素,采用适当的方法,可通过模型评估并分析研究区域对地质灾害的危险性。那么如何深刻理解地灾危险性评价模型?如何高效处理好致灾因子数据?如何针对具体区域建立切实可行的地质灾害危险性评价与灾后重建方案?本课程将提供一套基于ArcGIS的方法和案例。
GIS(Geographical Information System)——地理信息系统,是集地理、测绘、遥感和信息技术为一体,地理空间数据进行获取、管理、存储、显示、分析和模型化,以解决与空间位置有关的分析与管理问题。ArcGIS软件具有空间数据和属性数据的输入、编辑、查询、简单空间分析统计、输出、报表等功能,这为多源数据的有机整合提供了可能,也为建立灵活的分析模块提供了方便。空间分析功能是GIS得以广泛应用的重要原因之一。运用GIS分析技术,对各因素进行统计分析、信息叠加复合,研究地质灾害类型、分布规律级别和灾害损失度等,运用危险性指数等方法对地质灾害危险性现状进行评价与制图,将能使地质灾害风险评价更加效率化、科学化,为地质灾害数据库的建设提供有力支撑。

了解详细内容点击:《GIS技术在灾后重建中的空间规划与决策支持》

目录

    • 一、基本概念与平台讲解
    • 二、数据获取及预处理
    • 三、地质灾害风险评价模型与方法
    • 四、地质灾害风险性评价
    • 五、GIS在灾后重建中的应用实践
    • 六、论文写作与复现

一、基本概念与平台讲解

1、基本概念
地质灾害类型
地质灾害发育特征与分布规律
地质灾害危害特征
地质灾害孕灾地质条件分析
地质灾害诱发因素与形成机理
在这里插入图片描述
2、GIS原理与ArcGIS平台介绍
GIS简介
ArcGIS基础
空间数据采集与组织
空间参考
空间数据的转换与处理
ArcGIS中的数据编辑
地理数据的可视化表达
空间分析:
数字地形分析
叠置分析
距离制图
密度制图
统计分析
重分类
三维分析
在这里插入图片描述
3、Python编译环境配置
Python自带编辑器IDLE使用
Anaconda集成环境安装及使用
PyCharm环境安装及使用
在这里插入图片描述

二、数据获取及预处理

1、数据类型介绍
2、点数据获取与处理

灾害点统计数据获取与处理
在这里插入图片描述
气象站点数据获取与处理
气象站点点位数据处理
气象数据获取
数据整理
探索性分析
数据插值分析
在这里插入图片描述

3、矢量数据的获取与处理
道路、断层、水系等矢量数据的获取
欧氏距离
核密度分析
河网密度分析
在这里插入图片描述

4、栅格数据获取与处理
DEM,遥感影像等栅格数据获取
影像拼接、裁剪、掩膜等处理
NoData值处理
如何统一行列号
在这里插入图片描述

5、NC数据获取与处理
NC数据简介
NC数据获取
模型构建器
NC数据如何转TIF?
在这里插入图片描述

6、遥感云计算平台数据获取与处理
遥感云平台数据简介
如何从云平台获取数据?
数据上传与下载
基本函数简介
植被指数提取
土地利用数据获取
在这里插入图片描述

7、Python数据清洗
Python库简介与安装
读取数据
统一行列数
缺失值处理
相关性分析/共线性分析
主成分分析法(PCA)降维
数据标准化
生成特征集
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、地质灾害风险评价模型与方法

1、地质灾害易发性评价模型与方法
评价单元确定
易发性评价指标体系
易发性评价模型
权重的确定
2、滑坡易发性评价
评价指标体系
地形:高程、坡度、沟壑密度、地势起伏度等。
地貌:地貌单元、微地貌形态、总体地势等。
地层岩性:岩性特征、岩层厚度、岩石成因类型等
地质构造:断层、褶皱、节理裂隙等。
地震:烈度、动峰值加速度、历史地震活动情况等
工程地质:区域地壳稳定性,基岩埋深,主要持力层岩性、承载力、岩土体工程地质分区等。
常用指标提取
坡度、坡型、高程、地形起伏度、断裂带距离、工程地质岩组、斜坡结构、植被覆盖度、与水系距离等因子提取
在这里插入图片描述
指标因子相关性分析
(1)相关性系数计算与分析
在这里插入图片描述
评价指标信息量
在这里插入图片描述

评价指标权重确定
滑坡易发性评价结果分析与制图

滑坡易发性综合指数
易发性等级划分
易发性评价结果制图分析
在这里插入图片描述
2、崩塌易发性评价
3、泥石流易发性评价

泥石流评价单元提取
水文分析,沟域提取
土方纵坡分析
泥石流评价指标
崩滑严重性、泥沙沿程补给长度比、沟口泥石流堆积活动、沟谷纵坡降、区域构造影响程度、流域植被覆盖度、工程地质岩组、沿沟松散堆积物储量、流域面积、流域相对高差、河沟堵塞程度等
典型泥石流评价指标选取
在这里插入图片描述
在这里插入图片描述
评价因子权重确定
泥石流易发性评价结果分析与制图

泥石流易发性综合指数计算
泥石流的易发性分级确定
泥石流易发性评价结果
在这里插入图片描述
4、地质灾害易发性综合评价
综合地质灾害易发值=MAX [泥石流灾害易发值,崩塌灾害易发值,滑坡灾害易发值]

四、地质灾害风险性评价

1、地质灾害风险性评价
在这里插入图片描述
2、地质灾害危险性评价
危险性评价因子选取
在某种诱发因素作用下,一定区域内某一时间段发生特定规模和类型地质灾害的可能性。
区域构造复杂程度,活动断裂发育程度,地震活动等都可能诱发地质灾害;强降雨的诱发,灾害发生的频率、规模也会增强地质灾害发生的机率。
危险性评价因子量化
崩滑危险性因子量化
统计各级范围内的灾害个数及面积,利用信息量计算方法到各级的信息量值。
泥石流危险性评价因子权重
危险性评价与结果分析
3、地质灾害易损性评价
地质灾害易损性因子分析

人口易损性
房屋建筑易损性
农业易损性
林业易损性
畜牧业易损性
道路交通易损性
水域易损性
人口易损性评价因子提取
人口密度数据处理
用人口密度数据来量化人口易损性,基于各行政单元统计年鉴获取的人口数量,结合房屋建筑区数据,量化人口的空间分布,基于GIS的网格分析,得到单位面积上的人口数量即人口密度。
易损性赋值
人口易损性因子提取
建筑易损性评价
建筑区密度数据处理

用房屋建筑区密度数据来量化房屋建筑易损性,利用房屋建筑区数据,基于GIS的网格分析,得到单位面积上的房屋建筑区面积,即房屋建筑区密度。
易损性赋值
建筑物易损性因子提取
交通设施易损性评价

道路数据的获取
用 ArcGIS 缓冲分析功能,形成道路的面文件
不同类型的道路进行赋值
道路易损分布结果分析
综合易损性评价

综合易损性叠加权重
综合易损性评价结果提取与分析
4、地质灾害风险评价结果提取与分析
在这里插入图片描述

五、GIS在灾后重建中的应用实践

1、应急救援路径规划分析
表面分析、成本权重距离、栅格数据距离制图等空间分析;
利用专题地图制图基本方法,制作四川省茂县地质灾害应急救援路线图,
最佳路径的提取与分析
2、灾害恢复重建选址分析
确定选址的影响因子
确定每种影响因子的权重
收集并处理每种影响因子的数据:地形分析、距离制图分析,重分类
恢复重建选址分析
3、震后生态环境变化分析
使用该类软件强大的数据采集、数据处理、数据存储与管理、空间查询与空间分析、可视化等功能进行生态环境变化评价。
在这里插入图片描述
在这里插入图片描述

六、论文写作与复现

1、论文写作要点分析
2、论文投稿技巧分析

在这里插入图片描述
3、论文案例分析
案例:利用机器学习对灾害易发性评价研究
在这里插入图片描述
4、部分成果复现:
思考:
训练前是否有必要对特征归一化
为什么要处理缺失值(Nan值)
输入的特征间相关性过高会有什么影响
什么是训练集、测试集和验证集;为什么要如此划分
超参数是什么
什么是过拟合,如何避免这种现象
模型介绍:
逻辑回归模型
随机森林模型
支持向量机模型
实现方案:
在这里插入图片描述
一、线性概率模型——逻辑回归
介绍
连接函数的选取:Sigmoid函数
致灾因子数据集:数据介绍;相关性分析;逻辑回归模型预测;样本精度分析;分类混淆矩阵
注意事项
二、SVM支持向量机
线性分类器
SVM-核方法:核方法介绍;sklearn的SVM核方法
参量优化与调整
SVM数据集:支持向量机模型预测;样本精度分析;分类混淆矩阵
三、Random Forest的Python实现
数据集
数据的随机选取
待选特征的随机选取
相关概念解释
参量优化与调整:随机森林决策树深度调参;CV交叉验证定义;混淆矩阵;样本精度分析
基于pandas和scikit-learn实现Random Forest:数据介绍;随机森林模型预测;样本精度分析;分类混淆矩阵
四、方法比较分析
精度分析
结果对比分析
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/401283.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

单体微服务K8S笔记

单体微服务K8S笔记 https://blog.csdn.net/m0_48341969/article/details/126063832思路参考以上博客 //测试 https://gitee.com/yangbuyi/yi项目组织参考以上git 单体: 不特地介绍 微服务: rpc:远程过程调用 拆分,分别部署&#xff0…

Day04-流程控制语句_循环结构(while,do...while,关键字continue,关键字break,循环嵌套)

文章目录 Day04- 循环结构学习目标1 while循环2 do...while循环4 循环语句的区别5 关键字continue6 关键字break7 循环嵌套案例1:打印5行直角三角形案例2:break结束当层循环 Day04- 循环结构 学习目标 理解for语句的格式和执行流程 随机数公式 理解…

Linux中安装Nginx及日常配置使用

高性能的http服务器/反向代理服务器。官方测试支持5万并发,CPU、内存等消耗较低且运行稳定 使用场景 Http服务器。 Nginx可以单独提供Http服务,做为静态网页的服务器。虚拟主机。 可以在一台服务器虚拟出多个网站。反向代理与负载均衡。 Nginx做反向代理…

SQL注入之DNSLog外带注入

一、认识: 什么是dnslog呢? DNS就是域名解析服务,把一个域名转换成对应的IP地址,转换完成之后,DNS服务器就会有一个日志记录本次转换的时间、域名、域名对应的ip、请求方的一些信息,这个日志就叫DNSLog。…

基于 java springboot+layui仓库管理系统

基于 java springbootlayui仓库管理系统设计和实现 博主介绍:5年java开发经验,专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获取源…

好书推荐| After Effects 2022案例实战全视频教程

After Effects 2022案例实战全视频教程 作者 :王红卫 书号:9787302631958 定价:99元 出版时间:2023年7月 作者介绍 王红卫 拥有多年设计师的经学经验,北京理工大学百事特教师,水木风云工作室创始人&a…

网络编程知识整理

目录 1.1 引言 1.2 分层 1.3 TCP/IP的分层 1.4 互联网的地址 1.5 域名服务 1.6 封装 1.7 分用 1.8 端口号 1.1 引言 很多不同的厂家生产各种型号的计算机,它们运行完全不同的操作系统,但 T C P / I P协议族允许它们互相进行通信。这一点很让人感…

⭐北邮复试刷题105. 从前序与中序遍历序列构造二叉树__递归分治 (力扣每日一题)

105. 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,7], inorder [9,3,15,…

论文精读--word2vec

word2vec从大量文本语料中以无监督方式学习语义知识,是用来生成词向量的工具 把文本分散嵌入到另一个离散空间,称作分布式表示,又称为词嵌入(word embedding)或词向量 Abstract We propose two novel model architec…

Go 中的 init 如何用?它的常见应用场景有哪些呢?

嗨,大家好!我是波罗学。本文是系列文章 Go 技巧第十六篇,系列文章查看:Go 语言技巧。 Go 中有一个特别的 init() 函数,它主要用于包的初始化。init() 函数在包被引入后会被自动执行。如果在 main 包中,它也…

四、分类算法 - 随机森林

目录 1、集成学习方法 2、随机森林 3、随机森林原理 4、API 5、总结 sklearn转换器和估算器KNN算法模型选择和调优朴素贝叶斯算法决策树随机森林 1、集成学习方法 2、随机森林 3、随机森林原理 4、API 5、总结

Kubernetes 卷存储 NFS | nfs搭建配置 原理介绍 nfs作为存储卷使用

1、NFS介绍 NFS(Network File System)是一种分布式文件系统协议,允许客户端远程访问服务器上的文件,实现数据共享。它整合多个存储设备为统一文件系统,方便数据存储和管理,支持负载均衡和故障转移&#xf…

[设计模式Java实现附plantuml源码~行为型]协调多个对象之间的交互——中介者模式

前言: 为什么之前写过Golang 版的设计模式,还在重新写Java 版? 答:因为对于我而言,当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言,更适合用于学习设计模式。 为什么类图要附上uml 因为很…

DataX - 全量数据同步工具

前言 今天是2024-2-21,农历正月十二,相信今天开始是新的阶段,尽管它不是新的周一、某月一日、某年第一天,尽管我是一个很讲究仪式感的人。新年刚过去 12 天,再过 3 天就开学咯,开学之后我的大学时光就进入了…

内网穿透——NPS突然无法连接

温馨提示 😊😊😊😊😊😊😊🌭🌭🌭🌭🌭🌭🌭❤️❤️❤️❤️❤️❤️❤️🥨🥨&#x1f9…

Go语言中的TLS加密:深入crypto/tls库的实战指南

Go语言中的TLS加密:深入crypto/tls库的实战指南 引言crypto/tls库的核心组件TLS配置:tls.Config证书加载与管理TLS握手过程及其实现 构建安全的服务端创建TLS加密的HTTP服务器配置TLS属性常见的安全设置和最佳实践 开发TLS客户端应用编写使用TLS的客户端…

基于springboot+vue的B2B平台的购物推荐网站(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

数据结构 计算结构体大小

一、规则: 操作系统制定对齐量: 64位操作系统,默认8Byte对齐 32位操作系统,默认4Byte对齐 结构体对齐规则: 1.结构体整体的大小,需要是最大成员对齐量的整数倍 2.结构体中每一个成员的偏移量需要存在…

Bert基础(三)--位置编码

背景 还是以I am good(我很好)为例。 在RNN模型中,句子是逐字送入学习网络的。换言之,首先把I作为输入,接下来是am,以此类推。通过逐字地接受输入,学习网络就能完全理解整个句子。然而&#x…

物联网在智慧景区中的应用:提升游客体验与运营效率

目录 一、物联网技术概述 二、物联网在智慧景区中的应用 1、智能门票系统 2、智能导览系统 3、智能安全监控系统 4、智能环保系统 三、物联网在智慧景区中提升游客体验 1、提高游览便捷性 2、个性化服务体验 3、提升游客安全感 四、物联网在智慧景区中提升运营效率 …