贝叶斯统计——入门级笔记

绪论

1.1 引言

全概率公式

贝叶斯公式

三种信息

总体信息

当把样本视为随机变量时,它有概率分布,称为总体分布. 如果我们已经知道总体的分布形式这就给了我们一种信息,称为总体信息

样本信息

从总体中抽取的样本所提供的信息

先验信息

在抽样之前,有关统计推断问题中未知参数的一些信息 一股先验信息来自经验和历史资料。先验信息是存在的且可被人们利用

经典(古典)统计学 v.s. 贝叶斯统计学

样本信息+总体信息=抽样信息

基千总体信息和样本信息进行统计推断的理论和方法称为经典(古典)统计学(classical statistics)

基千上述3种信息进行统计推断的方法和理论称为贝叶斯统计学它与经典统计学的主要区别在于是否利用先验信息.在使用样本上也是存在差别的贝 叶斯方法重视巳出现的样本,对尚未发生的样本值不予考虑.

1.2 贝叶斯统计推断的若干基本概念

1.2.1 先验分布与后验分布

1.2.2 点估计问题
1.2.3 假设检验问题

1.2.4 区间估计问题

1.3 贝叶斯统计决策的若干基本概念

1.3.1 统计判决三要素

  • 样本空间和样本分布族
    •  样本分布族指的是用来描述观测数据的可能分布形式的一组概率分布。样本分布族可能包括多种常见的概率分布,比如正态分布、泊松分布、指数分布等,也可以是更为复杂的分布形式。在贝叶斯统计中,我们使用样本分布族来表示参数的不确定性,并通过先验概率分布来表达这种不确定性。在观测到数据后,我们通过贝叶斯更新的过程得到后验分布,从而更新了对参数的认知。
  • 行动空间

决策者对某个统计决策问题可能采取的行动所构成的非空集合,被称为行动空间(action space)或决策空间(decision space),记为D,常取D=\Theta

  • 损失函数

损失越小,决策函数越好损失。函数的类型很多,常用的有 “平方损失”“绝对值损失” 和 "线性损失” 等

1.3.2 风险函数和一致最优决策函数

风险函数是用来衡量决策的好坏程度的函数。在统计决策理论中,我们通常根据决策的结果和真实情况之间的差异来定义风险函数。常见的风险函数有均方误差、绝对误差等。它们可以帮助我们评估决策的风险和效果。

一致最优决策函数:一致最优决策函数是指在给定的风险函数下,能够最小化平均风险的决策函数。换句话说,一致最优决策函数是能够使整体风险最小化的决策规则。

1.3.3 贝叶斯期望损失和贝叶斯风险

贝叶斯期望损失是一种用于衡量决策的风险或损失程度的概念。贝叶斯期望损失通过考虑这些不确定性和损失,帮助我们评估不同决策的好坏。具体而言,贝叶斯期望损失是通过将损失函数与后验概率分布进行组合,计算出在给定的决策下,所期望的平均损失。贝叶斯期望损失的计算需要考虑到先验概率和损失函数。先验概率是我们对不同结果发生概率的主观或客观估计。损失函数定义了对不同结果的损失或代价。通过结合先验概率和损失函数,我们可以计算出在每种决策下的期望损失,然后我们可以根据这些期望损失进行决策选择。贝叶斯期望损失的目标是选择能够使期望损失最小化的决策,即选择具有最小风险或损失的决策。

贝叶斯风险是用于评估决策的整体风险。贝叶斯风险通过将不同决策的损失函数与先验概率加权结合起来,用来量化每个决策的期望风险。具体而言,贝叶斯风险可以通过对所有可能的决策下的期望损失进行求和或积分得到。这里的期望损失是通过将损失函数与后验概率分布进行组合,计算出在给定决策下的平均损失。贝叶斯风险是所有决策下的期望损失的加权平均,其中权重是根据先验概率分布计算的。通过比较不同决策的贝叶斯风险,我们可以确定风险最小的最优决策。通过考虑先验信息、不确定性和损失函数,贝叶斯风险能够提供一个综合的决策评估,帮助我们选择在整体风险最小的情况下做出的最佳决策。

风险函数的确与损失函数类似,但它们并不完全相同。

一个简单的例子来说明:

假设你是一个农场主,你需要决定在明天种植作物的数量。你可以选择种植的面积,这个面积将决定你的产量和收益。然而,天气是不确定的,可能会对作物产量产生影响。你想通过建立风险函数来评估不同种植面积的风险和预期收益。

在我们的例子中:

风险函数描述了在不同种植面积下预期收益与实际收益之间的差异的风险;

损失函数是用来衡量预期产量与实际产量之间的差异。

1.3.4 贝叶斯解

贝叶斯解(Bayes solution)指的是在统计决策理论中使用贝叶斯方法来解决判决问题的方法。贝叶斯解决方案通过考虑先验概率、似然函数和损失函数,利用贝叶斯定理来计算后验概率,从而为判定问题提供一个统计学上的最佳解决方案。具体来说,贝叶斯解决方案涉及以下几个步骤:

  1. 确定概率模型:首先需要建立一个包括先验概率和似然函数的概率模型,先验概率描述我们在观测到数据之前的主观信念,而似然函数则描述了观测到数据的发生概率。

  2. 观测数据:观测到实际数据后,我们需要使用贝叶斯定理来更新我们的先验信念,计算出后验概率,即在考虑到观测到的数据后对各种决策的可能性进行估计。

  3. 判决准则:基于后验概率以及所设定的损失函数,选择一个最优的判决准则,以最小化整体的期望损失。

1.4 一些基本统计方法及理论的简单回顾

1.4.1 充分统计量及因子分解定理

  • 充分统计量:对于一个统计模型中的参数,如果样本的条件分布在已知充分统计量的情况下不依赖于参数,则称该统计量是充分统计量。充分统计量包含了样本中关于参数的所有信息,使得我们可以只用充分统计量来做出关于参数的推断。
  • 因子分解定理:因子分解定理指出,对于一个充分统计量,似然函数可以被分解成两个函数的乘积:一个仅包含参数相关信息,另一个仅包含充分统计量相关信息。这个定理提供了一种简化推断的方法,将参数的估计与充分统计量联系起来。

1.4.2 一致最小方差无偏估计与C-R不等式

  • 一致最小方差无偏估计:指在估计某个参数时,既要估计准确(无偏),又要保证估计的方差尽可能小(最小方差)。如果一个估计量在样本量逐渐增加的情况下,趋向于估计准确的参数值且其方差趋近于零,那么这个估计被称为一致最小方差无偏估计。
  • C-R不等式:Cramér-Rao不等式是一个标准的统计理论结论,它指出对于任何无偏估计,估计量的方差下界由信息矩阵的逆矩阵和费舍尔信息不等式给出。这个不等式告诉我们,即使估计量是无偏的,其方差也受到一定的下界限制,我们不能通过简单的方法无限制地减小方差。

1.4.3 似然比检验方法

似然比检验是一种经典的假设检验方法,它使用似然函数的比值来比较两个假设的相对支持程度。

更多内容

贝叶斯统计-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_52505631/article/details/136198570

贝叶斯统计——2. 先验分布的选取-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_52505631/article/details/136199285?spm=1001.2014.3001.5501

贝叶斯统计——3. 常用统计模型参数的后验分布-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_52505631/article/details/136200182?spm=1001.2014.3001.5501

贝叶斯统计——4. 贝叶斯统计推断-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_52505631/article/details/136200809?spm=1001.2014.3001.5501

贝叶斯统计——5. 贝叶斯统计决策-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_52505631/article/details/136207470?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136207470%22%2C%22source%22%3A%22weixin_52505631%22%7D 贝叶斯统计——6. 贝叶斯统计计算方法-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_52505631/article/details/136207793?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136207793%22%2C%22source%22%3A%22weixin_52505631%22%7D

参考文献

贝叶斯统计,韦来生著,国家十二五重点出版教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/401029.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

无人机的视频图传技术

在操控无人机时,视频图传技术显得尤为关键。通过这项技术,无人机的摄像头所捕捉的画面能实时回传至遥控器,使操作者全面掌握无人机的拍摄情况。同时,无人机图传技术也是衡量无人机性能的重要标准,它关乎飞行距离与时间…

先进语言模型带来的变革与潜力

用户可以通过询问或交互方式与GPT-4这样的先进语言模型互动,开启通往知识宝库的大门,即时访问人类历史积累的知识、经验与智慧。像GPT-4这样的先进语言模型,能够将人类历史上积累的海量知识和经验整合并加以利用。通过深度学习和大规模数据训…

C#,动态规划(DP)丢鸡蛋问题(Egg Dropping Puzzle)的三种算法与源代码

1 扔鸡蛋问题 动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时&#xf…

【云原生】持续集成持续部署

本文主要总结CI/CD的流程,不会详细介绍每个知识点。 啥是集成?啥是部署? 集成,就是把应用程序、相关环境、配置全局打包放在一个容器中的操作。部署就不解释了。 CI/CD 如果是自己手动部署的话,流程应该是这样的&am…

亿道丨三防平板电脑厂家丨三防平板PDA丨三防工业平板:数字时代

在当今数字化时代,我们身边的世界变得越来越依赖于智能设备和无线连接。其中,三防平板PDA(Personal Digital Assistant)作为一种功能强大且耐用的数字工具,正在引领我们进入数字世界的全新征程。 三防平板PDA结合了平板…

深度学习系列59:文字识别

1. 简单文本: 使用google加的tesseract,效果不错。 首先安装tesseract,在mac直接brew install即可。 python调用代码: import pytesseract from PIL import Image img Image.open(1.png) pytesseract.image_to_string(img, lan…

全流程点云机器学习(二)使用PaddlePaddle进行PointNet的机器学习训练和评估

前言 这不是高支模项目需要嘛,他们用传统算法切那个横杆竖杆流程复杂耗时很长,所以想能不能用机器学习完成这些工作,所以我就来整这个工作了。 基于上文的数据集切分 ,现在来对切分好的数据来进行正式的训练。 本系列文章所用的…

Windows下搭建EFK实例

资源下载 elasticSearch :下载最新版本的就行 kibana filebeat:注意选择压缩包下载 更新elasticsearch.yml,默认端口9200: # Elasticsearch Configuration # # NOTE: Elasticsearch comes with reasonable defaults for most …

计算机网络-局域网和城域网(二)

1.局域网互联设备: 2层网桥(生成树、源路由)、3层交换机、路由器。网桥要求3层以上协议相同,1、2层协议不同可互联。 2.生成树网桥: 又叫透明网桥,IEEE802.1d,生成树算法。基本思想是在网桥之…

Flask数据库操作-Flask-SQLAlchemy

Flask中一般使用flask-sqlalchemy来操作数据库。flask-sqlalchemy的使用介绍如下: 一、SQLAlchemy SQLALchemy 实际上是对数据库的抽象,让开发者不用直接和 SQL 语句打交道,而是通过 Python 对象来操作数据库,在舍弃一些性能开销…

Java Swing游戏开发学习1

不使用游戏引擎,只使用Java SDK开发游戏的学习。 游戏原理 图片来自某大佬视频讲解 原理结合实际代码 public class GamePanel extends Jpanel implements Runnable {...run(){}// 详情看下图... }项目结构 运行效果 代码code 在我的下载里面可以找到&#xf…

从输入url到页面显示中间发生了什么

文章目录 整体概述URL释义用户输入缓存处理域名解析IP 地址什么是域名解析浏览器查找域名对应IP小结 TCP 三次握手握手时序三次握手数据包分析为什么需要三次握手 HTTP 请求HTTP 响应服务器MVC 后台处理阶段http 响应报文 TCP 四次挥手浏览器渲染 整体概述 浏览器输入 URL 到页…

Cesium 问题:加载 gltf 格式的模型之后太小,如何让相机视角拉近

文章目录 问题分析问题 刚加载的模型太小,如何拉近视角放大 分析 在这里有两种方式进行拉近视角, 一种是点击复位进行视角拉近一种是刚加载就直接拉近视角// 模型三加载 this.damModel = new Cesium.Entity({name: "gltf模型",position:</

Tomcat 学习之 Servlet

目录 1 Servlet 介绍 2 创建一个 Servlet 3 web.xml 介绍&#xff08;不涉及 filter 和 listener 标签&#xff09; 3.1 display-name 3.2 welcome-file-list 3.3 servlet 3.4 session-config 3.5 error-page 4 Tomcat 如何根据 URL 定位到 Servlet 5 执行 Servlet …

QT-Day2

思维导图 作业 使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#x…

【Crypto | CTF】BUUCTF RSA2

天命&#xff1a;密码学越来越难了&#xff0c;看别人笔记都不知道写啥 天命&#xff1a;莫慌&#xff0c;虽然我不会推演法&#xff0c;但我可以用归纳法 虽然我不知道解题的推演&#xff0c;但我可以背公式啊哈哈哈 虽然我不会这题&#xff0c;但是我也能做出来 公式我不知…

ElasticStack安装(windows)

官网 : Elasticsearch 平台 — 大规模查找实时答案 | Elastic Elasticsearch Elastic Stack(一套技术栈) 包含了数据的整合 >提取 >存储 >使用&#xff0c;一整套! 各组件介绍: beats 套件:从各种不同类型的文件/应用中采集数据。比如:a,b,cd,e,aa,bb,ccLogstash:…

挑战杯 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

文章目录 0 简介1 常用的分类网络介绍1.1 CNN1.2 VGG1.3 GoogleNet 2 图像分类部分代码实现2.1 环境依赖2.2 需要导入的包2.3 参数设置(路径&#xff0c;图像尺寸&#xff0c;数据集分割比例)2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)2.5 数据预…

四、分类算法 - 朴素贝叶斯算法

目录 1、朴素贝叶斯算法 1.1 案例 1.2 联合概率、条件概率、相互独立 1.3 贝叶斯公式 1.4 朴素贝叶斯算法原理 1.5 应用场景 2、朴素贝叶斯算法对文本进行分类 2.1 案例 2.2 拉普拉斯平滑系数 3、API 4、案例&#xff1a;20类新闻分类 4.1 步骤分析 4.2 代码分析 …

Java SE 入门到精通—基础语法【Java】

敲重点&#xff01; 本篇讲述了比较重要的基础&#xff0c;是必须要掌握的 1.程序入口 在Java中&#xff0c;main方法是程序的入口点&#xff0c;是JVM&#xff08;Java虚拟机&#xff09;执行Java应用程序的起始点。 main方法的方法签名必须遵循下面规范&#xff1a; publ…