堆的结构实现与应用

目录

         前言:

1.认识堆

a.如何认识堆?

b.大根堆与小根堆

c.堆应用的简单认识

2.堆的结构与要实现的功能

3.向上调整算法

4.向下调整算法

5.向堆插入数据并建堆

6.堆的大小

7.堆的判空

8.取堆顶数据

9.删除堆顶数据

10.向上调整时间复杂度

11.向下调整时间复杂度

12.堆排序

a.直接将数组放到堆再取堆顶

b.在将数组放到堆的时候就直接调整,用数组建堆

13.topk问题

总结:


前言:

堆其实与二叉树息息相关,本篇将从如何实现堆,以及堆的应用等方面入手。

1.认识堆

a.如何认识堆?

我们只要记住关键的两点:1.堆必须是完全二叉树。2.堆要么是大堆,要么是小堆。

b.大根堆与小根堆

那什么是大堆,什么又是小堆呢?

大堆:树中任意一个父亲都大于或等于孩子。

小堆:树中任意一个父亲都小于或等于孩子。

c.堆应用的简单认识

堆排序:时间复杂度为O(N*logN),属于快一点的排序。

topk问题:N个数找最大的前K个。

优先级队列:C++中stl的priority_queue容器的底层实现需要用到建堆的思想。

2.堆的结构与要实现的功能

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	HPDataType size;
	HPDataType capacity;
}HP;

void InitHeap(HP* php);
void DestroyHeap(HP* php);
void PushHeap(HP* php, HPDataType x);
void HeapPop(HP* php);
HPDataType HeapTop(HP* php);
bool HeapEmpty(HP* php);
int HeapSize(HP* php);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(int* a, int n, int parent);
void Swap(HPDataType* p1, HPDataType* p2);

我们提供以下数据来建堆:

3.向上调整算法

我们现在如果要让提供的数据插入到这个堆里面,如何保证插入的时候就建好堆了呢?这时我们就要用到向上向下调整的算法了。假设我们现在要建一个小堆,就要保证每一个子节点都要小于或者等于它的父节点,用我们提供好的数据,当插入到32这个数据的时候就要进行调整了:

既然是向上调整,那我们就要找孩子的父亲,那如何找到父亲呢?通过下标的关系可以发现,不管是左还是右孩子,只要遵循(child-1)/2就能找到父亲的下标,然后就是交换嘛;交换过后我们要让孩子走到父亲位置,再找到新的父亲,一轮一轮的向上,这就是向上调整算法:

void AdjustUp(HPDataType* a, int child)
{
	//默认建小堆
	int parent = (child - 1) / 2;

	while (child > 0)//等于0就停止了,等于0说明孩子在根的位置,就没有父亲了
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);

			child = parent;//孩子走到父亲的位置继续再找新的父亲
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}

要注意的就是循环条件,如果孩子走到0说明走到根的位置了,就没有父亲了,循环停止。

4.向下调整算法

向下调整算法与向上调整算法相反,其实向下就是找孩子,如果建小堆就让左右孩子中最小的孩子与父亲交换(最小的孩子与父亲交换后,父亲就变成三者中最小的了,符合小堆的性质),再让父亲走到孩子的位置上,再往下继续找到新的孩子,直到孩子不存在的情况。

关键来了,如何找到左右孩子中的最小的那个呢?如何通过父亲找到孩子呢?

我们可以默认左孩子是最小的那一个,如果左孩子大于右孩子,那做孩子的下标+1不就到右孩子了吗?解决了第一个问题,那如何通过父亲找到孩子呢,既然我们默认左孩子是小的那一个,我们可以先找到左孩子,通过下标的关系,我们就知道左孩子child=parent*2+1,好了,这就是向下调整算法的思路,来看代码:

void AdjustDown(int* a, int n, int parent)
{
	//默认小堆
	int child = parent * 2 + 1;//默认是左孩子

	while (child < n)
	{
		//这里右孩子的存在条件必须放在&&的前面,因为如果放在后面,前面的条件为假,右孩子也为假,就判断不出来是哪个了(检查右孩子存在必须更严格)
		if (child + 1 < n && a[child] > a[child + 1])//如果右孩子存在(因为如果左孩子为n-1,那右孩子就为n了,就越界了)并且左孩子大于右孩子,下标就走到右孩子上
		{
			child = child + 1;
		}

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);

			parent = child;
			child = parent * 2 + 1;
		}

		else
		{
			break;
		}
	}

}

注意点:

1.我们既然默认左孩子为小的那一个,那结束条件就应该是左孩子不存在的情况即当左孩子等于n的时候就越界了,而又由于堆是完全二叉树,所以左孩子不存在,那右孩子一定不存在,所以只写这一个就行。

2.child + 1 < n && a[child] > a[child + 1],首先需要注意左孩子存在,但右孩子不存在的情况,所以判断child+1<n,其次这个条件要写到&&的前面,因为如果写到后面,a[child]>a[child+1]为假,就判断不出右孩子可能越界的情况了,所以右孩子的检查应该放到&&前面。

5.向堆插入数据并建堆

void PushHeap(HP* php, HPDataType x)
{
	assert(php);
	if (php->size == php->capacity)
	{
		int NewCapacity = php->capacity = 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * NewCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = NewCapacity;

	}
	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);//向上调整传孩子,即插入的数据,找父亲

}

需要注意的是最后向上调整传的孩子是插入的数据的下标,因为插入后size++了,所以-1才对应插入的数据的下标。

6.堆的大小

int HeapSize(HP* php)
{
	assert(php);
	return php->size;
}

7.堆的判空

bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

8.取堆顶数据

HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(&php));

	return php->a[0];
}

9.删除堆顶数据

如果我们直接删除堆顶的数据会导致这个堆变乱,所以我们采用交换堆顶和堆尾的数据,将堆的大小减1,这样就访问不到堆尾的数据也就起到了删除的效果了,然后我们再从根节点开始做向下调整算法,恢复堆即可,注意空堆不能删,要判空:

void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(&php));
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);//从根节点开始向下调整

}

10.向上调整时间复杂度

按最坏的情况计算时间复杂度,就拿满二叉树来说:

我们先找到每一次的节点数,再乘向上调整的次数,假设树的高度为h,那我们就将1-h层的所有节点的调整次数相加,就是时间复杂度(计算采用等比数列求和的乘公比错位相减的方法):

又因为满二叉树的节点个数为2^h-1,所以我们设树有N个节点,就能得到高度,再代入F(h):

实际去除不影响结果的项也就是O(N*logN),N为节点个数。

11.向下调整时间复杂度

一样拿满二叉树来说:

实际计算结果:

实际去除不影响结果的项也就是O(N),N为节点个数。

12.堆排序

a.直接将数组放到堆再取堆顶

void HeapSort1(int* a, int n)
{
	HP hp;
	InitHeap(&hp);


	for (int i = 0; i < n; i++)
	{
		PushHeap(&hp, a[i]);
	}

	int i = 0;
	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		a[i++] = top;
		HeapPop(&hp);
	}
}

这样的坏处就是想要改升序降序要改向上向下调整的逻辑,有些麻烦,而且时间上有些麻烦,需要堆排的时候还要写一个堆出来。

b.在将数组放到堆的时候就直接调整,用数组建堆

如果我们要排成降序,就建小堆,小堆选出最小的,首尾交换,最小的放到最后的位置,最后一个数据不看做堆里面的,再次向下调整就可以选出次小的,以此类推,相当于一个一个头插;

调用一次是O(logN),N次就是O(N*logN),计算方法跟向下调整差不多;

向下调整建堆需要倒着调整,叶子节点不需要处理,倒数第一个非叶子节点即最后一个节点的父亲开始调整:

void HeapSort(int* a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

如果我们要排升序,只需要改动向下调整或者写两个建堆方法:

改动两处:选孩子时选大的那个;如果孩子大于父亲,交换:

建堆时也可向上调整建堆,具体实现博主暂时不清楚~~~:

for (int i = 1; i < n; i++)//下标为0即第一个数默认是堆
	{
		AdjustUp(a, i);//建堆,相当于一个一个插入成堆
	}

注意:

1.为什么升序不建小堆呢?因为小堆最小的已经在前面了,不管是移动还是怎么剩下的都要重新建堆

2.堆排序整体时间复杂度为N+N*logN,也就是O(N*logN)

13.topk问题

什么是topk问题?

就是N个数找最大的前N个:

面对庞大的数据,数据放在磁盘的文件里面,而内存是有限的,所以我们将这些数据的前k个建堆,将剩下的数据与堆顶元素进行比较,符合条件就交换,然后再调整,重复操作即可,那该怎么建堆呢?首先对前3 数据进行建一个小堆,注意这里不能建大堆,如果建大堆的话,可能最大的数据在前三个数,其余2个数据在余下的 N-K个数里面,这样其余2个就不能进堆了:

void CreateNData()
{
	//造数据
	int n = 10000;
	srand((unsigned int)time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}
	for (size_t i = 0; i < n; i++)
	{
		int x = rand() % 1000000;
		fprintf(fin, "%d\n", x);
	}

	fclose(fin);
}

void PrintTopK(int k)
{
	const char* file = "data.txt";
	FILE* fout = fopen(file, "r");
	if (fout == NULL)
	{
		perror("fopen error");
		return;
	}
	int* kminheap = (int*)malloc(sizeof(int) * k);
	if (kminheap == NULL)
	{
		perror("malloc error");
		return;
	}
	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &kminheap[i]);
	}

	for (int i = (k - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(kminheap, k, i);
	}

	int val = 0;
	while (!feof(fout))//fscanf读到文件结尾,调用feof,feof读到文件末尾返回非0,否则返回0
	{
		fscanf(fout, "%d", &val);
		if (val > kminheap[0])
		{
			kminheap[0] = val;
			AdjustDown(kminheap, k, 0);
		}
	}

	for (int i = 0; i < k; i++)
	{
		printf("%d ", kminheap[i]);
	}
	printf("\n");
}

总结:

堆的结构不难,难在和其他的场景联系到一起并涉及一些算法,所以还是掌握好它结构和算法的基础为主

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/400967.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(十二)【Jmeter】线程(Threads(Users))之tearDown 线程组

简述 操作路径如下: 作用:在正式测试结束后执行清理操作,如关闭连接、释放资源等。配置:设置清理操作的采样器、执行顺序等参数。使用场景:确保在测试结束后应用程序恢复到正常状态,避免资源泄漏或对其他测试的影响。优点:提供清理操作,确保测试环境的整洁和可重复性…

【前端】夯实基础 css/html/js 50个练手项目(持续更新)

文章目录 前言Day 1 expanding-cardsDay 2 progress-steps 前言 发现一个没有用前端框架的练手项目&#xff0c;很适合我这种纯后端开发夯实基础&#xff0c;内含50个mini project&#xff0c;学习一下&#xff0c;做做笔记。 项目地址&#xff1a;https://github.com/bradtr…

集合可视化:rainbow box与欧拉图

论文&#xff1a;A new diagram for amino acids: User study comparing rainbow boxes to Venn/Euler diagram 最近偶然看到了这篇论文&#xff0c;觉得很有意思&#xff0c;针对的任务是集合数据的可视化。 我们用示例来说明&#xff0c;比如图二的欧拉图&#xff0c;展示的…

爬取链家二手房房价数据存入mongodb并进行分析

实验目的 1.使用python将爬虫数据存入mongodb&#xff1b; 2.使用python读取mongodb数据并进行可视化分析。 实验原理 MongoDB是文档数据库&#xff0c;采用BSON的结构来存储数据。在文档中可嵌套其他文档类型&#xff0c;使得MongoDB具有很强的数据描述能力。本节案例使用的…

【深度学习】微调Qwen1.8B

1.前言 使用地址数据微调Qwen1.8B。Qwen提供了预构建的Docker镜像&#xff0c;在使用时获取镜像只需安装驱动、下载模型文件即可启动Demo、部署OpenAI API以及进行微调。 github地址&#xff1a;GitHub - QwenLM/Qwen: The official repo of Qwen (通义千问) chat & pretr…

计算机设计大赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐…

ELK Stack 日志平台搭建

前言 最近在折腾 ELK 日志平台&#xff0c;它是 Elastic 公司推出的一整套日志收集、分析和展示的解决方案。 专门实操了一波&#xff0c;这玩意看起来简单&#xff0c;但是里面的流程步骤还是很多的&#xff0c;而且遇到了很多坑。在此记录和总结下。 本文亮点&#xff1a;…

PEARL: 一个轻量的计算短文本相似度的表示模型

| &#x1f4bb; [code] | &#x1f4be; [data] | &#x1f917; PEARL-small | &#x1f917; PEARL-base | 论文 如何计算短文本相似度是一个重要的任务&#xff0c;它发生在各种场景中&#xff1a; 字符串匹配&#xff08;string matching&#xff09;。我们计算两个字符…

Stable Diffusion 模型下载:A-Zovya RPG Artist Tools(RPG 大师工具箱)

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八 下载地址 模型介绍 A-Zovya RPG Artist Tools 模型是一个针对 RPG 训练的一个模型&#xff0c;可以生成一些 R…

win32 汇编读文件

做了2个小程序&#xff0c;没有读成功&#xff1b;文件打开了&#xff1b; .386.model flat, stdcalloption casemap :noneinclude windows.inc include user32.inc includelib user32.lib include kernel32.inc includelib kernel32.lib include Comdlg32.inc includelib …

Js如何判断两个数组是否相等?

本文目录 1、通过数组自带方法比较2、通过循环判断3、toString()4、join()5、JSON.stringify() 日常开发&#xff0c;时不时会遇到需要判定2个数组是否相等的情况&#xff0c;需要实现考虑的场景有&#xff1a; 先判断长度&#xff0c;长度不等必然不等元素位置其他情况考虑 1…

【Java EE初阶二十一】http的简单理解(二)

2. 深入学习http 2.5 关于referer Referer 描述了当前页面是从哪个页面跳转来的&#xff0c;如果是直接在地址栏输入 url(或者点击收藏夹中的按钮) 都是没有 Referer。如下图所示&#xff1a; HTTP 最大的问题在于"明文传输”,明文传输就容易被第三方获取并篡改. …

使用Templ进行Go模板化

使用Templ在Go项目中高效生成动态内容的指南 动态内容生成是Web开发的一个基本方面。无论您是在构建网站、Web应用程序还是API&#xff0c;根据数据和模板生成动态内容的能力都至关重要。在Go编程世界中&#xff0c;一个名为“Templ”的强大工具简化了这一过程。在这份全面的指…

QT day2 2.21

1.使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 代码&#xff1a; #include "mywidget.h" #include "ui_mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(pa…

c#创建安装windows服务

背景:最近在做设备数据对接采集时,遇到一些设备不是标准的Service-Client接口,导致采集的数据不够准确;比如设备如果中途开关机后,加工的数量就会从0开始重新计数,因此需要实时监控设备的数据,进行叠加处理;考略到工厂设备比较多,实时监听接口的数据为每秒3次,因此将…

Stable diffusion UI 介绍-文生图

1.提示词&#xff1a; 你希望图中有什么东西 2.负面提示词&#xff1a;你不希望图中有什么东西 选用了什么模型 使用参数 1.采样器 sampling method 使用什么算法进行采样 2.采样迭代步数 sampling steps 生成图像迭代的步数&#xff0c;越多越好&#xff0c;但是生成速度越大越…

微服务篇之监控

一、为什么要监控 1.问题定位 假设客户端查询一些东西的时候&#xff0c;需要经过网关&#xff0c;然后服务A调用服务H&#xff0c;服务H调用K&#xff0c;服务K调用MySQL&#xff0c;当查询不出来的时候&#xff0c;我们不能快速定位到底是哪个服务的问题&#xff0c;这就需要…

良好的 API 安全策略的重要性

根据 Cloudflare 2024 年 API 安全与管理报告&#xff0c;到 2024 年&#xff0c;API 请求占全球动态互联网流量的 57%&#xff0c;这证实 API 是现代软件开发的重要组成部分。但随着多年来它们的采用不断增加&#xff0c;相关的安全挑战也随之增加。 在过去两年中&#xff0c…

Java零基础 - 关系运算符

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一个人虽可以走的更快&#xff0c;但一群人可以走的更远。 我是一名后…

Java基础API(2) String、StringBuilder详解

文章目录 &#x1f378;1. String类&#x1f349;&#x1f349;1.1 String概述&#x1f349;&#x1f349;1.2 String类的构造方法&#x1f349;&#x1f349;1.3 创建字符串对象的区别对比&#x1f349;&#x1f349;1.4 字符串的比较1.4.1 字符串的比较 &#x1f349;&#x…