合并Windows电脑的不同分区(不同的盘)的方法

  本文介绍在Windows操作系统的电脑中,将磁盘上的不同分区(例如E盘与F盘)加以合并的方法。

  最近,想着将新电脑的2分区加以合并;如下图所示,希望将E盘与F盘合并为一个分区。本文就介绍一下实现这一需求的具体做法。

  这里首先需要注意:合并磁盘分区时,我们只能对相邻2个分区加以操作,且只能将右侧的分区合并至左边,否则是不可以合并的。其次需要注意:在合并分区前,需要将2个分区的数据都备份一下,防止出现数据丢失的问题。

  首先,我们在开始菜单上右键,并选择“磁盘管理”;如下图所示。

  随后,在弹出的“磁盘管理”窗口中,找到待合并的2个分区的靠右的那一个(在本文中,也就是F盘);在其上方右键,选择“删除卷”。如下图所示。

  随后,在弹出的提示窗口中,选择“”选项;如下图所示。

  随后,可能还会有一个弹出的提示窗口,我们依旧选择“”选项;如下图所示。

  随后,即可在“磁盘管理”窗口中,发现刚刚被我们删除的F盘,已经显示为黑色,且提示“未分配”了;如下图所示。

  随后,我们找到待合并的2个分区的靠左的那一个(在本文中,也就是E盘);在其上方右键,选择“扩展卷”。如下图所示。

  随后,在弹出的窗口中,选择“下一页”;如下图所示。

  接下来,我们将需要扩展的空间选定。如下图所示,我这里是将磁盘上此时所有可用的空间(也就是刚刚删除F盘后出现的剩余空间)都选中了;然后将“选择空间量”设置为“最大可用空间量”。

  随后,选择“完成”即可;如下图所示。

  此时,在“磁盘管理”窗口中,发现E盘已经被扩大了;如下图所示。

  此时,在资源管理器中也可以看到,F盘已经消失,而E盘的容量被扩大——其被扩大的容量,就等于原本F盘的容量(只是大致相等,不一定会完全一致)。如下图所示。

  至此,大功告成。

欢迎关注:疯狂学习GIS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/400138.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习基础——SSD目标检测

SSD网络介绍 使用多个特征图作为特征预测层。 SSD (Single Shot MultiBox Detector)于2016年提出。当网络输入为300300大小时,在VOC2007测试集上达到74.3%的mAP;当输入是512512大小时,达到了76.9%的mAP SSD_Backbone部分介绍 不变的部分 特征提取网…

CMake的简单使用

一、一个最简单的CMake项目 在Ubuntu上使用CMake构建一个最简单的项目。 1. 安装CMake 首先安装CMake,这里使用的是Ubuntu系统。 sudo apt-get install cmake2. 编写源程序 编写代码,新建文件main.c。 // main.c #include "stdio.h"int …

国内最全的AIGC大模型软件都是免费的,不比chatgpt香吗?我都为你准备好了,又可以提前下班了

无极低码 :https://wheart.cn 豆包(云雀大模型)、文心一言、悟空、星火、百度文库、360智脑、天宫AI、智谱清言(GLM大模型)、百川模型(百川智能)、日日新(商汤)、上海人工智能实验室(书生通用大模型)、夸克。 国内最全的AIGC大模型软件都是…

devOps系列(七)grafana+prometheus监控告警

前言 作者目前打算分享一期关于devOps系列的文章,希望对热爱学习和探索的你有所帮助。 文章主要记录一些简洁、高效的运维部署指令,旨在 记录和能够快速地构建系统。就像运维文档或者手册一样,方便进行系统的重建、改造和优化。每篇文章独立…

微信小程序 -- npm 支持

目录 npm 支持 1. 构建 npm 2. 自定义构建 npm 3. Vant 组件的使用方式 4. Vant 组件的样式覆盖 npm 支持 1. 构建 npm 目前小程序已经支持使用 npm 安装第三方包,但是这些 npm 包在小程序中不能够直接使用,必须得使用小程序开发者工具进行构建后才…

【力扣 - 二叉树的直径】

题目描述 给你一棵二叉树的根节点,返回该树的 直径 。 二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root 。 两节点之间路径的 长度 由它们之间边数表示。 提示: 树中节点数目在范围 [1, 10000] 内…

电流回路是分析电路图的基础,看看这个电路你会更明白

任何电器要想开始工作,都离不开供电,而要供电就离不开电源。电源有两个极即:电源正极()、电源负极(-),电源要实现向负载供电,必须是电源正极()流出电流经负载再流回电源负极(-),这时可以说这个电路构成了供电电流回路了…

tokenizer添加token的详细demo

文章目录 前言一、tokenizer添加token二、结果比较1、手动添加token2、代码验证添加token3、结果显示 前言 我们在Hugging Face不同模型对应的tokenizer映射字典,不存在某些专有词汇,我们需要新增对应的token,以便我们使用对应模型处理不存在…

消息中间件-面试题

MQ选择 一、Kafka 1、消息队列如何保证消息可靠性 消息不重复 生产者控制消费者幂等消息不丢失 生产者发送,要确认broker收到并持久化broker确认消费者消费完,再删除消息2、kafka是什么 Kafka是一种高吞吐量、分布式、基于发布/订阅的消息中间件,是Apache的开源项目。broke…

打造智能物品租赁平台:Java与SpringBoot的实践

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

每日一题——LeetCode1470.重新排列数组

方法一 把数组的前n项看做一个数组&#xff0c;后n项看做一个数组&#xff0c;两个数组循环先后往res里push元素 var shuffle function(nums, n) {let res[]for(let i0;i<n;i){res.push(nums[i])res.push(nums[in])}return res }; 消耗时间和内存情况&#xff1a; 方法二…

WEB APIs (4)

日期对象 实例化 代码中出现new关键字&#xff0c;创建时间对象 得到当前时间&#xff1a; const date new Date&#xff08;&#xff09; 获得指定时间&#xff1a; const date new Date&#xff08;‘2022-5-1’&#xff09; 方法作用说明getFullYear()获取年份获取…

【笔试强训错题选择题】Day1.习题(错题)解析

文章目录 前言 错题题目 错题解析 总结 前言 错题题目 1. 2. 3. 错题解析 1. 解析&#xff1a;D 解题思路&#xff1a; 本题有一个父类Base&#xff1b;同时有一个子类Child继承父类Base&#xff1b; 本题考察的是子类中的方法要与父类的方法构成重写的操作&#xff1b; 相…

pikachu靶机-XSS

XSS&#xff1a; XSS&#xff08;跨站脚本&#xff09;概述 Cross-Site Scripting 简称为“CSS”&#xff0c;为避免与前端叠成样式表的缩写"CSS"冲突&#xff0c;故又称XSS。一般XSS可以分为如下几种常见类型&#xff1a; 1.反射性XSS; 2.存储型XSS; 3.DOM型XSS; …

二级等保需要什么样的SSL证书?

根据等级保护对象在国家安全、经济建设、社会生活中的重要程度&#xff0c;以及一旦遭到破坏、丧失功能或者数据被篡改、泄露、丢失、损毁后&#xff0c;对国家安全、社会秩序、公共利益以及公民&#xff0c;法人和其他组织的合法权益的侵害程度等因素&#xff0c;等级保护对象…

Vue | (三)使用Vue脚手架(下)| 尚硅谷Vue2.0+Vue3.0全套教程

文章目录 &#x1f4da;Vue 中的自定义事件&#x1f407;使用方法&#x1f407;案例练习&#x1f407;TodoList案例优化 &#x1f4da;全局事件总线&#x1f407;使用方法&#x1f407;案例练习&#x1f407;TodoList案例优化 &#x1f4da;消息订阅与发布&#x1f407;使用方法…

Java面试题:synchronized专题

王有志,一个分享硬核Java技术的互金摸鱼侠 加入Java人的提桶跑路群:共同富裕的Java人 今天是《面霸的自我修养》的第3弹,内容是Java并发编程中至关重要的关键字synchronized,作为面试中的“必考题”,这部分是你必须要充分准备的内容,接下来我们就一起一探究竟吧。数据来源…

React 事件处理 ( this问题 参数传递 ref)

React事件的命名采用小驼峰方式&#xff08;cameCase&#xff09;,而不是小写 使用JSX语法时你需要传入一个函数作为事件处理函数&#xff0c;而不是一个字符串 你不能通过返回false 的方式阻止默认行为。你必须显示式的使用preventDefault 1 this 需要谨慎对待JSX回调函数中的…

再见,Anaconda的安装和配置老大难问题!

一、什么是Anaconda&#xff1f; 1. 简介 Anaconda&#xff08;官方网站&#xff09;就是可以便捷获取包且对包能够进行管理&#xff0c;同时对环境可以统一管理的发行版本。Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。 2. 特点 Anaconda具有如下特点&a…

以太坊 Dencun 升级与潜在机会

撰文&#xff1a;Biteye 核心贡献者 Fishery Isla 文章来源Techub News专栏作者&#xff0c;搜Tehub News下载查看更多Web3资讯。 以太坊网络升级 Dencun 测试网版本在 2024 年 1 月 17 日上线了 Goerli 测试网&#xff0c;1 月 30 日成功上线了 Sepolia 测试网&#xff0c;D…