C++力扣题目 121--买卖股票的最佳时机 122-- 买卖股票的最佳时机II 123--买卖股票的最佳时机III 188--买卖股票的最佳时机IV

121. 买卖股票的最佳时机

力扣题目链接(opens new window)

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

  • 示例 1:

  • 输入:[7,1,5,3,6,4]

  • 输出:5
    解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

  • 示例 2:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0
    解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

#思路

#暴力

这道题目最直观的想法,就是暴力,找最优间距了。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            for (int j = i + 1; j < prices.size(); j++){
                result = max(result, prices[j] - prices[i]);
            }
        }
        return result;
    }
};

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

当然该方法超时了。

#贪心

因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

C++代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low = INT_MAX;
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            low = min(low, prices[i]);  // 取最左最小价格
            result = max(result, prices[i] - low); // 直接取最大区间利润
        }
        return result;
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

#动态规划

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没区分清楚。

在下面递推公式分析中,我会进一步讲解。

  1. 确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递推公式我们就分析完了

  1. dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

  1. 确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

  1. 举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

121.买卖股票的最佳时机

dp[5][1]就是最终结果。

为什么不是dp[5][0]呢?

因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!

以上分析完毕,C++代码如下:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;
        vector<vector<int>> dp(len, vector<int>(2));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }
        return dp[len - 1][1];
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

从递推公式可以看出,dp[i]只是依赖于dp[i - 1]的状态。

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

那么我们只需要记录 当前天的dp状态和前一天的dp状态就可以了,可以使用滚动数组来节省空间,代码如下:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
        }
        return dp[(len - 1) % 2][1];
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

这里能写出版本一就可以了,版本二虽然原理都一样,但是想直接写出版本二还是有点麻烦,容易自己给自己找bug。

所以建议是先写出版本一,然后在版本一的基础上优化成版本二,而不是直接就写出版本二。

 

122.买卖股票的最佳时机II

力扣题目链接(opens new window)

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入: [7,1,5,3,6,4]

  • 输出: 7
    解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

  • 示例 2:

  • 输入: [1,2,3,4,5]

  • 输出: 4
    解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入: [7,6,4,3,1]

  • 输出: 0
    解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 10 ^ 4
  • 0 <= prices[i] <= 10 ^ 4

#思路

本题我们在讲解贪心专题的时候就已经讲解过了贪心算法:买卖股票的最佳时机II (opens new window),只不过没有深入讲解动态规划的解法,那么这次我们再好好分析一下动规的解法。

本题和121. 买卖股票的最佳时机 (opens new window)的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)

在动规五部曲中,这个区别主要是体现在递推公式上,其他都和121. 买卖股票的最佳时机 (opens new window)一样一样的

所以我们重点讲一讲递推公式。

这里重申一下dp数组的含义:

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

注意这里和121. 买卖股票的最佳时机 (opens new window)唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况

在121. 买卖股票的最佳时机 (opens new window)中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

注意这里和121. 买卖股票的最佳时机 (opens new window)就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!

代码如下:(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[len - 1][1];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

大家可以本题和121. 买卖股票的最佳时机 (opens new window)的代码几乎一样,唯一的区别在:

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

这正是因为本题的股票可以买卖多次! 所以买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]。

想到到这一点,对这两道题理解的就比较深刻了。

这里我依然给出滚动数组的版本,C++代码如下:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
        }
        return dp[(len - 1) % 2][1];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

 

123.买卖股票的最佳时机III

力扣题目链接(opens new window)

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:prices = [3,3,5,0,0,3,1,4]

  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

  • 示例 2:

  • 输入:prices = [1,2,3,4,5]

  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

  • 示例 4:

  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10

#思路

这道题目相对 121.买卖股票的最佳时机 (opens new window)和 122.买卖股票的最佳时机II (opens new window)难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

  1. 确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

  1. 确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5]为例

123.买卖股票的最佳时机III

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(n × 5)

当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<int> dp(5, 0);
        dp[1] = -prices[0];
        dp[3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[1] = max(dp[1], dp[0] - prices[i]);
            dp[2] = max(dp[2], dp[1] + prices[i]);
            dp[3] = max(dp[3], dp[2] - prices[i]);
            dp[4] = max(dp[4], dp[3] + prices[i]);
        }
        return dp[4];
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

大家会发现dp[2]利用的是当天的dp[1]。 但结果也是对的。

我来简单解释一下:

dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。

如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是今天再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。

这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去!

对于本题,把版本一的写法研究明白,足以!

#拓展

其实我们可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如我们在 121.买卖股票的最佳时机 (opens new window)和 122.买卖股票的最佳时机II (opens new window)也没有设置这一状态是一样的。

代码如下:

// 版本三 
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][1] = max(dp[i - 1][1], 0 - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};

 

188.买卖股票的最佳时机IV

力扣题目链接(opens new window)

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:k = 2, prices = [2,4,1]

  • 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

  • 示例 2:

  • 输入:k = 2, prices = [3,2,6,5,0,3]

  • 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100
  • 0 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

#思路

这道题目可以说是动态规划:123.买卖股票的最佳时机III (opens new window)的进阶版,这里要求至多有k次交易。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

在动态规划:123.买卖股票的最佳时机III (opens new window)中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • .....

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

所以二维dp数组的C++定义为:

vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));

  1. 确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

本题和动态规划:123.买卖股票的最佳时机III (opens new window)最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {
    dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

188.买卖股票的最佳时机IV

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

以上分析完毕,C++代码如下:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {

        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};

  • 时间复杂度: O(n * k),其中 n 为 prices 的长度
  • 空间复杂度: O(n * k)

当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。

但感觉三维数组操作起来有些麻烦,我是直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/399795.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于FPGA的二维DCT变换和逆变换verilog实现,包含testbench

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 数据导入到matlab显示图像 2.算法运行软件版本 vivado2019.2 matlab2022a 3.部分核心程序 timescale 1ns / 1ps // // Company: // Engineer:…

阿里云国际-在阿里云服务器上快速搭建幻兽帕鲁多人服务器

幻兽帕鲁是最近流行的新型生存游戏。该游戏一夜之间变得极为流行&#xff0c;同时在线玩家数量达到了200万。然而&#xff0c;幻兽帕鲁的服务器难以应对大量玩家的压力。为解决这一问题&#xff0c;幻兽帕鲁允许玩家建立专用服务器&#xff0c;其提供以下优势&#xff1a; &am…

如何在Ubuntu部署Emlog,并将本地博客发布至公网可远程访问

文章目录 前言1. 网站搭建1.1 Emolog网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2.Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总结 前言 博客作为使…

使用Docker部署Docker-Compose-Ui工具并实现公网访问

文章目录 1. 安装Docker2. 检查本地docker环境3. 安装cpolar内网穿透4. 使用固定二级子域名地址远程访问 Docker Compose UI是Docker Compose的web界面。这个项目的目标是在Docker Compose之上提供一个最小的HTTP API&#xff0c;同时保持与Docker Compose CLI的完全互操作性。…

十大顶级电脑分区恢复软件,不用重装系统直接分区磁盘

与分区相关的问题总是令人不愉快&#xff0c;但解决它们并不像看起来那么困难。您只需要使用可用的最佳分区恢复软件&#xff0c;例如本文列出的 10 种解决方案。配备功能强大的分区数据恢复软件&#xff0c;无论分区损坏有多严重&#xff0c;您都应该能够立即恢复数据。 我们如…

【git 使用】使用 git rebase -i 修改任意的提交信息/合并多个提交

修改最近一次的提交信息的方法有很多&#xff0c;可以参考这篇文章&#xff0c;但是对于之前的提交信息进行修改只能使用 rebase。 修改提交信息 假设我们想修改下面这个提交信息&#xff0c;想把【登录】改成【退出登录】步骤如下 运行 git rebase -i head~3 打开了一个文本…

数据结构与算法:栈

朋友们大家好啊&#xff0c;在链表的讲解过后&#xff0c;我们本节内容来介绍一个特殊的线性表&#xff1a;栈&#xff0c;在讲解后也会以例题来加深对本节内容的理解 栈 栈的介绍栈进出栈的变化形式 栈的顺序存储结构的有关操作栈的结构定义与初始化压栈操作出栈操作获取栈顶元…

Fluter学习3 - Dart 空安全

Dart 空安全&#xff1a; 空类型操作符 (?)空值合并操作符 (??)空值断言操作符 (!)延迟初始化 (late) 1、空类型操作符 (?) 当你想要根据一个表达式是否为 null 来执行某个操作时&#xff0c;你可以使用 (?)语法&#xff1a;expression1?.expression2如果 expression1…

关于开放系统互联的一些笔记

最近几天就发几篇计算机方面的基础知识 属于个人归纳整理&#xff0c;便于理解希望对大家有帮助 原文地址&#xff1a;关于开放系统互联的一些笔记 - Pleasure的博客 下面是正文内容&#xff1a; 前言 最近在恶补一些计算机方面的基础知识…… 正文 首先为了能够更透彻的理…

c语言结构体与共用体

前面我们介绍了基本的数据类型 在c语言中 有一种特殊的数据类型 由程序员来定义类型 目录 一结构体 1.1概述 1.2定义结构体 1.3 结构体变量的初始化 1.4 访问结构体的成员 1.5结构体作为函数的参数 1.6指向结构的指针 1.7结构体大小的计算 二共用体 2.1概述 2.2 访…

智慧安防/视频监控汇聚平台EasyCVR如何通过接口调用获取设备录像回看的流地址?

视频云存储/视频融合/安防监控EasyCVR视频汇聚系统可兼容各品牌的IPC、NVR、移动单兵、智能手持终端、移动执法仪、无人机、布控球等设备的接入&#xff0c;支持的接入协议包括&#xff1a;国标GB28181、RTSP/Onvif、RTMP&#xff0c;以及厂家的私有协议与SDK&#xff0c;如&am…

探索在GIS中使用ChatGPT

在创建了一个简单的点击询问 ChatGPT GIS 应用程序之后&#xff0c;我一直在努力想出关于如何在 GIS 应用程序中使用 ChatGPT 和 OpenAI 的更好的主意。后来想到只需要要问问 ChatGPT “如何使用它”&#xff0c;下面是对其中的几个实例。 简单的点击询问应用程序 地理输入和输…

最大划水收益

解法&#xff1a; 双指针、贪心 #include <iostream> #include <vector> using namespace std; #define endl \nint main() {ios::sync_with_stdio(false);cin.tie(0); cout.tie(0);int n, k;cin >> n >> k;vector<int> vec(n, 0);for (int i …

你所在的行业,有必要做小程序么?

引言 在当今数字化飞速发展的时代&#xff0c;企业和行业正面临着不断变化的市场环境。随着移动互联网的崛起&#xff0c;小程序作为一种轻量级、便捷的应用形式&#xff0c;逐渐成为各行各业提升服务效率、拓展市场份额的重要工具。对于你所在的行业&#xff0c;究竟是否有必…

【深度优先搜索】【树】【状态压缩】2791. 树中可以形成回文的路径数

作者推荐 【深度优先搜索】【树】【有向图】【推荐】685. 冗余连接 II 本文涉及知识点 深度优先搜索 树 图论 状态压缩 LeetCode:2791. 树中可以形成回文的路径数 给你一棵 树&#xff08;即&#xff0c;一个连通、无向且无环的图&#xff09;&#xff0c;根 节点为 0 &am…

Javascript怎么输出内容?两种常见方式以及控制台介绍

javascript是一种非常重要的编程语言&#xff0c;在许多网页中它被广泛使用&#xff0c;可以实现许多交互效果和动态效果。输出是javascript中最基本的操作之一&#xff0c;下面将介绍两种常见的输出方式。 一、使用console.log()函数输出 console.log()函数是常用的输出函数…

【牛客面试必刷TOP101】Day24.BM34 判断是不是二叉搜索树和BM35 判断是不是完全二叉树

作者简介&#xff1a;大家好&#xff0c;我是未央&#xff1b; 博客首页&#xff1a;未央.303 系列专栏&#xff1a;牛客面试必刷TOP101 每日一句&#xff1a;人的一生&#xff0c;可以有所作为的时机只有一次&#xff0c;那就是现在&#xff01;&#xff01;&#xff01;&…

3d模型导出fbx面出错是什么原因?怎么解决---模大狮模型网

3D模型在导出为FBX格式时出错可能有多种原因&#xff0c;以下是一些常见的原因和解决方法&#xff1a; 一&#xff1a;模型包含不支持的元素 某些特定的元素或功能在导出为FBX格式时可能会导致错误。例如&#xff0c;某些软件中使用了特殊的插件、约束或动画效果&#xff0c;这…

【学习笔记】数据结构与算法04:哈希表、哈希冲突、哈希算法

知识出处&#xff1a;Hello算法&#xff1a;https://www.hello-algo.com/ 文章目录 2.3 哈希表2.3.1 哈希表「 hash table」2.3.1.1 哈希表常见操作2.3.1.2 哈希表的简单实现2.3.1.3 哈希冲突与扩容 2.3.2 哈希冲突2.3.2.1 「链式地址 separate chaining」2.3.2.2 「开放寻址 o…

数字革命的先锋:探索Web3的无限可能性

随着科技的不断进步&#xff0c;我们正在迎来数字革命的新时代。在这个时代中&#xff0c;Web3技术作为数字革命的先锋&#xff0c;正以其独特的特点和无限的可能性引领着未来的发展方向。本文将深入探索Web3技术的核心原理、应用场景以及对未来的影响&#xff0c;揭示数字革命…