PyTorch 1.13简介

# 1.  PyTorch 1.13

据官方介绍,PyTorch 1.13 中包括了 BetterTransformer 的稳定版,且不再支持 CUDA 10.2 及 11.3,并完成了向 CUDA 11.6 及 11.7 的迁移。此外 Beta 版还增加了对 Apple M1 芯片及 functorch 的支持。

1.1 主要更新

  1. BetterTransformer 功能集 (feature set) 支持一般的 Transformer 模型在推理过程中,无需修改模型即可进行 fastpath 执行。

此外改进还包括对 Transformer 模型中常用 size 进行加速的 add+matmul 线性代数内核,现已默认启用嵌套 Tensor。

  1. 不再支持旧的 CUDA 版本,引入 Nvidia 推出的最新 CUDA 版本。这使得 PyTorch 和新的 NVIDIA Open GPU 内核模块得以支持 C++17 。

  2. functorch 从单独软件包变为可直接通过 import functorch 导入 PyTorch 使用,无需再单独安装。

  3. 测试为 M1 芯片 Mac 提供本地构建,并提供更好的 PyTorch API 支持。

1.2  稳定版和测试版

在这里插入图片描述

2.  Stable Features

2.1  BetterTransformer API

BetterTransformer 功能集 (feature set) 支持一般的 Transformer 模型在推理过程中,无需修改模型即可进行 fastpath 执行。

作为补充,PyTorch 1.13 中还针对 Transformer 模型中常用的 size,加速了 add+matmul 线性代数内核。

为了提升 NLP 模型性能,PyTorch 1.13 中的 BetterTransformer 默认启用嵌套 Tensor (Nested Tensor)。在兼容性方面,执行 mask check 确保能提供连续 mask。

Transformer Encoder 中 src_key_padding_mask 的 mask check 可以通过设置 mask_check=False 屏蔽。该设置可以加快处理速度,而非仅提供对齐的 mask。

最后,提供了更好的报错信息,简化错误输入的诊断,同时为 fastpath execution 错误提供了更佳的诊断方法。

Better Transformer 直接集成到 PyTorch TorchText 库中,这使得 TorchText 用户能够更轻松地利用 BetterTransformer 的速度及效率性能。

在这里插入图片描述
Betterformfast 的 fastpath 执行现已稳定可用

并默认启用嵌套张量表示的稀疏优化;

2.2 引入 CUDA 11.6 和 11.7,

不再支持 CUDA 10.2 和 11.3

CUDA 11 是第一个支持 C++17 的 CUDA 版本,不再支持 CUDA 10.2 是推进 PyTorch 支持 C++17 的重要一步,还能通过消除遗留的 CUDA 10.2 特定指令,来改进 PyTorch 代码。

CUDA 11.3 的退出和 11.7 的引入,使得 PyTorch 对 NVIDIA Open GPU 内核模块的兼容性更好,另一个重要的亮点是对延迟加载 (lazy loading) 的支持。

CUDA 11.7 自带 cuDNN 8.5.0,包含大量优化,可加速基于 Transformer 的模型,库的 size 减少 30% ,并对 runtime fusion engine 进行了各种改进。

3.  Beta版本 Features

3.1 functorch

functorch 是 PyTorch 中的一个库;

与 Google JAX 类似,functorch 是 PyTorch 中的一个库,提供可组合的 vmap(矢量化)和 autodiff 转换。它支持高级的 autodiff 用例(在 PyTorch 中难以表达),包括:

  • 模型集成 model ensembling

  • 高效计算 Jacobian 和 Hessians

  • 计算 per-sample-gradients 或其他 per-sample quantities

PyTorch 1.13 内置 functorch 库,无需单独安装。通过 conda 或 pip 安装 PyTorch 后,就可以在程序中 import functorch 了。

提供可组合的 vmap(向量化)和 autodiff 转换

在这里插入图片描述

3.2 集成英特尔 VTune™ Profiler 及 ITT

PyTorch 用户如果希望在英特尔平台上用底层性能指标来分析每个算子的性能时,可以在英特尔 VTune™ Profiler 中可视化 PyTorch 脚本执行的算子级 timeline。


with torch.autograd.profiler.emit_itt():
    for i in range(10):
        torch.itt.range_push('step_{}'.format(i))
        model(input)
        torch.itt.range_pop()

3.3 NNC:增加 BF16 和 Channels last 支持

通过在 NNC 中增加 Channels last 和 BF16 的支持,TorchScript 在 x86 CPU 上的 graph-mode 推理性能得到了显著提升。

在英特尔 Cooper Lake 处理器上,通过这两项优化,可以使得视觉模型性能达到 2 倍以上的提升。

通过现有的 TorchScript、Channels last 以及 BF16 Autocast API,可以实现性能提升。如下所示,NNC 中的优化将迁移到新的 PyTorch DL Compiler TorchInductor 中:

import torch
import torchvision.models as models
model = models.resnet50(pretrained=True)
# Convert the model to channels-last
model = model.to(memory_format=torch.channels_last)
model.eval()
data = torch.rand(1, 3, 224, 224)
# Convert the data to channels-lastdata = data.to(memory_format=torch.channels_last)
# Enable autocast to run with BF16
with torch.cpu.amp.autocast(), torch.no_grad():
# Trace the model
model = torch.jit.trace(model, torch.rand(1, 3, 224, 224))
  model = torch.jit.freeze(model)
  # Run the traced model
  model(data)

3.4 增加对 M1 芯片苹果设备的支持

自 1.12 版本以来,PyTorch 一直致力于为苹果 M1 芯片提供原生构建。PyTorch 1.13 进一步改进了相关 API。

PyTorch 1.13 在 M1 macOS 12.6 实例上进行了除 torch.distribution 之外的所有子模块测试。这些改进后的测试,可以修复 cpp 扩展以及某些输入的 convolution correctnes 等功能。

注意:该功能要求 M1 芯片的 macOS 12 或更高版本,并使用原生 Python (arm64) 。

4. Prototype Features

4.1. 针对 AWS Graviton 的 ACL 后端支持

PyTorch 1.13 通过 Arm Compute Library (ACL) 在 aarch64 CPU 上实现了 CV 和 NLP 推理的实质性提升,这使得 ACL 后端得以支持 PyTorch 及 torch-xla 模块。亮点包括:

  • 启用 mkldnn+acl 作为 aarch64 torch wheel 的默认后端

  • 为 arch64 BF16 设备启用 mkldnn matmul operator

  • 将 TensorFlow xla+acl 功能引入 torch-xla。

4.2. CUDA Sanitizer

启用后,Sanitizer 将开始分析因用户的 PyTorch 代码而调用的底层 CUDA operation,以检测数据争用报错 (data race error)。

注:这些报错是由源自不同 CUDA Stream 的不同步数据访问而导致的。

与 Thread Sanitizer 类似,定位到的报错会与错误访问的堆栈 trace 一起打印出来。

机器学习应用中损坏的数据很容易被忽略,报错有时候也并不显现,因此用于检测并定位错误的 CUDA Sanitizer 就格外重要了。

4.3. 部分支持 Python 3.11

用户可通过 pip 下载支持 Python 3.11 的 Linux 二进制文件。不过这个功能只是一个 preview 版,Distributed、Profiler、FX 和 JIT 等功能并未完全支持。

ref

OpenBayes.com 现已上线多个中文 PyTorch 官方教程,包括但不限于 NLP,CV,DL 等多个实例,您可以访问控制台,在公开资源中搜索查看。

参考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/39838.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java虚拟机——字节码指令简介

Java虚拟机的指令由一个字节长度的、代表着某种特定操作含义的数字(称为操作码) 以及 跟随其后的零至多个代表此操作所需的参数(称为操作数)构成。大多数指令都不包括操作数,只有一个操作码,指令参数都存放…

【云原生】k8s安全机制

前言 Kubernetes 作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。API Server 是集群内部各个组件通信的中介, 也是外部控制的入口。所以 Kubernetes 的安全机制基本就是围绕保护 API Server 来设计的。 比如 kubectl 如果想向 API…

记一次真实MySQL百万数据优化

证实下确实是150万+数据哈 原SQL 原SQL执行计划 原SQL执行时间 5秒左右 原SQL分析 思路来源 整体看下SQL好像没啥可优化的。那咱们就大错特错了。 可能有人会说B表为啥在A表后面不正常呀,因为这是内连接查询不是左右连接查询。A,B表的顺序是可以交换的(实测无影响) 首先我们…

JVM之内存与垃圾回收篇2

文章目录 3 运行时区域3.1 本地方法栈3.2 程序计数器3.3 方法区3.3.1 Hotspot中方法区的演进3.3.2 设置方法区内存大小3.3.3 运行时常量池3.3.4 方法区使用举例3.3.5 方法区的演进3.3.5 方法区的垃圾回收 3.4 栈3.4.1 几个面试题 3.5 堆3.5.1 Minor GC、Major GC和Full GC3.5.2…

linux之Ubuntu系列 find 、 ln 、 tar、apt 指令 软链接和硬链接 snap

查找文件 find 命令 功能非常强大,通常用来在 特定的目录下 搜索 符合条件的文件 find [path] -name “.txt” 记得要加 “ ” 支持通配符 ,正则表达式 包括子目录 ls 不包括 子目录 如果省略路径,表示 在当前路径下,搜索 软链接…

Python爬虫——urllib_微博cookie登陆

cookie登陆适用场景: 适用场景:数据采集的时候,需要绕过登陆,然后进入到某个页面 # 适用场景:数据采集的时候,需要绕过登陆,然后进入到某个页面 import urllib.requesturl https://weibo.cn/7…

Linux 学习记录52(ARM篇)

Linux 学习记录52(ARM篇) 本文目录 Linux 学习记录52(ARM篇)一、汇编语言相关语法1. 汇编语言的组成部分2. 汇编指令的类型3. 汇编指令的使用格式 二、基本数据处理指令1. 数据搬移指令(1. 格式(2. 指令码类型(3. 使用示例 2. 立即数(1. 一条指令的组成 3. 移位操作指令(1. 格式…

Revit中如何创建水的效果及基坑?

一、Revit中如何创建水的效果? 我们在创建建筑的时候会遇上小池塘啊小池子之类的装饰景观,Revit又不像专业的3D软件那样可以有非常真实的水的效果,那么我们该如何简单创建水呢?下面来看步骤: 1、 在水池位置创建一块楼板,并将该…

【DevOps】Atlassian插件开发指南

本文以Bamboo插件开发为例,记录一下插件开发过程。 一、简介 Atlassian Bamboo 6.9.1 是一款持续集成和持续交付(CI/CD)工具,支持使用插件扩展其功能。如果需要开发自己的 Bamboo 插件并添加到 Bamboo 中,则可以参考…

sqli-labs 堆叠注入 解析

打开网页首先判断闭合类型 说明为双引号闭合 我们可以使用单引号将其报错 先尝试判断回显位 可以看见输出回显位为2,3 尝试暴库爆表 这时候进行尝试堆叠注入,创造一张新表 ?id-1 union select 1,database(),group_concat(table_name) from informatio…

mac端好用的多功能音频软件 AVTouchBar for mac 3.0.7

AVTouchBar是来自触摸栏的视听播放器,将跳动笔记的内容带到触摸栏,触摸栏可显示有趣的音频内容,拥有更多乐趣,以一种有趣的方式播放音乐,该软件支持多种音频播放软件,可在Mac上自动更改音乐~ 音频选择-与内…

javascript实现久久乘法口诀表、document、write、console、log

文章目录 正序乘法口诀表倒序乘法口诀表logconsoledocumentwrite 正序乘法口诀表 function multiplicationTable() {for (let i 1; i < 9; i) {let val ;for (let j 1; j < i; j) {document.write(j * i (i * j) &nbsp );val ${j}*${i}${i * j} ;}consol…

【Linux】进程间通信——管道/共享内存

文章目录 1. 进程间通信2. 管道匿名管道命名管道管道的特性管道的应用&#xff1a;简易的进程池 3. System V共享内存共享内存的概念共享内存的结构共享内存的使用代码实现 1. 进程间通信 进程间通信&#xff08;Inter-Process Communication&#xff0c;简称IPC&#xff09;是…

跨网络的通信过程、路由的作用以及默认网关

如下网络拓扑图&#xff0c;交换机0所在的网段为192.168.1.0/24&#xff0c;交换机1所在网段为192.168.2.0/24&#xff0c;且各自有2台主机&#xff1a; 假设PC0&#xff08;192.168.1.10/32&#xff09;要跟PC4&#xff08;192.168.2.11/32&#xff09;通信&#xff0c;如何实…

基于 chinese-roberta-wwm-ext 微调训练 6 分类情感分析模型

一、模型和数据集介绍 1.1 预训练模型 chinese-roberta-wwm-ext 是基于 RoBERTa 架构下开发&#xff0c;其中 wwm 代表 Whole Word Masking&#xff0c;即对整个词进行掩码处理&#xff0c;通过这种方式&#xff0c;模型能够更好地理解上下文和语义关联&#xff0c;提高中文文…

DuiLib中的list控件以及ListContainerElement控件

文章目录 前言1、创建list控件2、创建 ListContainerElement 元素&#xff0c;并添加到 List 控件中,这里的ListContainerElement用xml来表示3、在 ListContainerElement 元素中添加子控件 1、List控件2、ListContainerElement控件 前言 在 Duilib 中&#xff0c;List 控件用于…

Python 集合 add()函数使用详解,集合添加元素

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;小白零基础《Python入门到精通》 add函数使用详解 1、元素的顺序2、可以添加的元素类型3、添加重复的元素4、一次只…

Python爬虫学习笔记:1688商品详情API 开发API接口文档

1688API接口是阿里巴巴集团推出的一种开放平台&#xff0c;提供了丰富的数据接口、转换工具以及开发资源&#xff0c;为开发者提供了通用的应用接口及大量数据资源&#xff0c;支持开发者在1688上进行商品搜索、订单管理、交易报表及物流等方面的操作。 1688API接口主要包含以…

Unity游戏源码分享-单车骑行游戏

Unity游戏源码分享-单车骑行游戏 项目地址&#xff1a;https://download.csdn.net/download/Highning0007/88057717

MySQL之DML和DDL

1、显示所有职工的基本信息&#xff1a; 2、查询所有职工所属部门的部门号&#xff0c;不显示重复的部门号。 3、求出所有职工的人数。 4、列出最高工和最低工资。 5、列出职工的平均工资和总工资。 6、创建一个只有职工号、姓名和参加工作的新表&#xff0c;名为工作日期表。 …